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B.1 Fibre manufacturing and fibre doping 
 

B.1.1 Optical fibre manufacturing 

Optical fibre manufacturing can be split into three steps: preform forming, drawing and 

coating. The preform has a similar structure and index profile as the wanted fibre and can be 

used beforehand to examine the expected fibre quality, for example, whether the fibre 

possesses core ellipticity, by using a preform analyser (see Figure C.5, Appendix C). There 

are several methods for manufacturing the preform but they all use some kind of vapour 

deposition technology, e.g. modified chemical vapour deposition (MCVD) or outside vapour 

deposition (OVD). In MCVD, the chemical vapour deposition which builds up the core and 

cladding flows into a rotating silica tube which is heated from outside, and after deposition 

the tube is collapsed into a rod [225]. OVD, developed by Corning Glass Works, uses a 

rotating starting rod and the core and cladding is deposited from outside onto the rod [226]. 

The MCVD and OVD methods are of interest in this thesis since all the fibres we used for 

measuring birefringence and DGD are made by using one of the two methods. It is interesting 

to note that fibres manufactured using the MCVD technique suffer from higher ellipticity 

compared to OVD [66], [91]. The fibre ellipticity using MCVD originates mainly from the 

noncircularity in the silica tube which gets impressed in the fibre core and cladding after 

collapsing the tube. 

 

B.1.2 Fibre doping of core and cladding 

The refractive index difference between core and cladding, which is necessary for guiding the 

light, can be achieved by doping either the core and/or the cladding. Figure B.1 shows some 

examples of dopants which can be used. For low loss high reliability fibres, different dopant 

combinations are possible. With MCVD, as used at BT Labs, Ipswich, UK, a matched 

cladding technique is used for the step index fibre for manufacturing reasons. The core is 

doped with ~3 mol% GeO2 and the cladding with ~2 mol% P2O5 and ~1 mol% F. In general, 

the doping level for manufacturing the fibre is more of a trial and error technique [91]. For DS 

fibres, BT Labs uses a rectangular profile (see Figure C.5, Appendix C) where the inner layer 

of the core is doped with about 8 mol% GeO2 and the cladding with P2O5 and F, as for the 

step index fibre. For OVD, as developed and used by Corning, only the core is doped with 

GeO2 [105]. For small doping concentrations, a simple linear equation for the refractive index 



APPENDIX B   Additional results and the derivation of relevant equations B II 

difference as a function of the doping level 

with GeO2 can be derived, by using 

Sellmeiers equation [71], as 

 

 Δ ≈ 0.106•x  (B.1) 

 

where x is the GeO2 concentration in mol%. 
 

 

B.1.3 Birefringence, DPD and DGD 

due to shape and stress birefringence 

To compute the thermal stress birefringence due to core ellipticity from doping the cladding 

with P2O5 and F, the matched cladding technique is assumed so that Δ can be taken as 

constant. The thermal expansion coefficients for P2O5 and GeO2 have been considered in the 

following simulations, as given in Table 3.1. 

 

Figure B.2 shows the simulation result for the shape, δβG, and the corresponding thermal 

stress birefringence, δβS, with and without Phosphor in the cladding as a function of the V 

value for S-SMF. The shape birefringence is essentially independent of the doping (Equation 

3.27) and is mainly determined by the core ellipticity which has been taken as 1%. 
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Figure B.2 Simulation of δβG and δβS as a function of the V value with and without 

Phosphor doping in the cladding, with C(λ) and n(λ). 

The use of P2O5 in the cladding, as used by BT Labs (DEDF 2), makes the thermal expansion 

coefficient difference in Equation (3.29) (stress birefringence) smaller, and as can be seen in 
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Figure B.1 Refractive index for common 

dopants of SiO2 (From[66]) 
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Figure B.2, at some doping level inverts the sign so that δβG and δβS are in opposition, i.e. 

their fast axes are orthogonal. The two birefringence effects can thus partially cancel each 

other and fibre with low birefringence and low PMD can result. 

 

In Figure B.3(a), the calculated DGD and DPD are plotted for the birefringence of the S-SMF 

in Figure B.2(b) for 1% ellipticity. The solid line in Figure B.3(a) corresponds to the DGD 

and the dashed line in Figure B.3(a) shows the DPD. It can be seen that for 1 mol% P2O5 in 

the cladding, the DGD due to the thermal stress contribution is minimised, compared to the 

case without doping in the cladding, as expected from the reduced thermal stress 

birefringence in Figure B.2(a). For larger doping of the core, a sign inversion occurs, and the 

DGD due to the thermal stress birefringence starts again to be the dominant contribution to 

the total DGD. 
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Figure B.3 S-SMF (a) DGD and DPD due to δβG + δβS with and without Phosphor in the 

cladding (b) relative difference in DGD and DPD. 

 

The relative difference Δτ of the DGD and DPD is plotted in Figure B.3(b) as a function of 

wavelength. It can now be seen that even for fixed values of core diameter, a, and relative 

refractive index difference, Δ, the minimum and maximum difference in the DGD and DPD 

can be between 25% and 100% at 1.55 μm depending on the Phosphor level in the cladding. 

This difference in the DGD and DPD would of course make it more difficult, in addition to 

variation of the fibre parameters a and Δ (see Figure 3.15), to accurately calculate from the 

measured birefringence at a single wavelength the DGD for such a fibre (Chapter 7, POTDR). 

B.2 PSP - DGD equation in rotating reference frame 
 

B.2.1 The DGD vector equation for twisted fibres 
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The magnitude of the DGD vector 
r
Ω  can be evaluated directly in the rotating frame, as 

shown in Subsection 5.2.3. In the rotating frame, it can be shown that the dispersion vector is 

composed of two components, one is parallel to ( )[ ]δβ δβ γ δβ$ = − −L
T

g0 2  and grows 

linearly with length, whilst the other is orthogonal to δβ$ , of constant magnitude with length, 

and follows a circular motion in the plane orthogonal to δβ$ . The rotation matrix in the 

rotating frame is given by Equation 5.30 as 

 

 ( )R I B B( ) sin( ) cos( )δβ δβ δβ
r

l l l= + + −1 2  (B.2) 

 

where B is the skew-symmetric matrix defined in Equation (5.27). The derivative of R( )δβ
r

l  

with respect to optical frequency is given by 
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cos( ) sin( ) sin( ) cos( )

δβ δβ δβ δβ δβ δβ

δβ δβ δβ δβ δβ

l l l l l l

l l l l l

2

2

1

1
 (B.3) 

 

Multiplying the length growing part of ′R with the transpose of the rotation gives the 

polarisation dispersion matrix Ω  in the rotating reference frame (Equation 5.38) 

 

 ( ) ( )( )Ω = ′ = + ′ − + −R R B B I B BT l l l l lcos( ) sin( ) sin( ) cos( )δβ δβ δβ δβ δβ2 21  (B.4) 

 

where the property BT = − B has been used. Using −B = B3 (Equation 5.10) Equation (B.4) 

can be re-written as 

 

 Ω = ′ = ′R R BT lδβ  (B.5) 

 

or in vector notation  

 

 
r
Ω = ′δβ δβ$ l  (B.6) 

where the normalised rotation axis of the skew-symmetric matrix B is given by 

( )[ ]δβ δβ γ δβ$ = − −L
T

g0 2 . Equation (B.6) shows that the DGD vector is growing 

linearly with length parallel to δβ$  as given in Equation (5.44).  
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B.2.2 The small oscillating term 

Multiplication of the oscillating term of the dispersion matrix Equation (B.3) with the 

transpose of the rotation matrix, Equation (B.2), gives  

 

 ( )( )( ) ( )( )Ω* sin( ) cos( ) sin( ) cos( )= ′ + − ′ + ′ − + −δβ δβ δβ δβl l l lB B B BB I B B1 1 2  (B.7) 

 

using BB B′ = 0  and −B = B3 Equation (B.7) can be re-written as 

 

 
( ) ( )
( ) ( )
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= ′ + − ′ − ′ + − ′
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δβ δβ δβ δβ δβ

δβ δβ δβ

l l l l l

l l l

B BB B B B B

B BB B B

1 1

1 1

2

 (B.8) 

 

substituting into Equation (B.8) ′ = ′ ×B s sr rδβ$ , BB s s′ = ′
r rδβ δβ$ $T  and ′ = ′B Bs sr rδβδβ$ $ T  

 

 
( ) ( )
( )( )

Ω
r r r r

r r

s l s l s l s

l s l s

T T

T T
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sin( ) $ cos( ) $ $ $ $
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1 1

1
 (B.9) 

 

The last term in Equation (B.9) can be re-written in vector index notation; using the 

Kronecker delta δij which is defined as δi j
if i j
otherwise, =

=⎧
⎨
⎩

1
0

 and the permutation symbol εijk 

defined in Equation (5.9) 

 

 
( ) ( )

( )
δβ δβ δβδβ δβ δβ δβ δβ δ δ δ δ δβ δβ
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kij klm l m ijk
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 (B.10) 

where ( )ε δβ δβijk
k

$ $× ′  is the searched skew-symmetric matrix which can be written in vector 

form as ( )δβ δβ$ $× ′
ij

. The oscillating term of the dispersion matrix can be written in vector 

form as given in Equation (5.44) as 

 

 ( ) ( ) ( )( ) ( )r
Ω* sin

$

cos $
$

= + − ×
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

δβ
δβ

ω
δβ δβ

δβ

ω
l l

d

d

d

d
1  (B.11) 

 



APPENDIX B   Additional results and the derivation of relevant equations B VI 

B.2.3 The orthogonality of the small oscillating terms to δβ$  

 

Proof that δβ$′ is orthogonal to δβ$ : 

(i)  δβ$  is a unit vector and δβ δβ$ $⋅ = 1.  

(ii) 
( ) ( ) ( ) ( )d

d

d

d

d

d

d

d

δβ δβ

ω

δβ

ω
δβ δβ

δβ

ω

δβ

ω
δβ

$ $ $
$ $

$ $
$

⋅
= + = 2  

(iii) Because ( )d
d

1
0

ω
=  (ii) only holds if δβ$′ is orthogonal to δβ$  

 

 

B.3 Spun fibres with sinusoidal spin and uniform elastic twist 
 

B.3.1 DGD of spun fibres with sinusoidal spin as a function of elastic twist at 

different lengths 

In Figure B.4, the length dependence of the DGD for spun fibre with sinusoidal spin as a 

function of external applied twist has been investigated. The initial birefringence of DSF Spun 

4 which, for an effective spin of ~γ rms  ≈ 4.4 turns/m, showed some fluctuation in its DGD with 

external twist (see Figure 6.17), has been chosen for the simulation to show that these peak 

values grow linearly with fibre length. The fibre parameters for the simulated fibre in Figure 

B.4 are:  

δβL = 2.55 rad/m → DGD(γ = 0) ≈ 2.1 ps/km 

Λγ = 2 m and Aγ = 2×2π radians 

 

The calculated DGD values have been normalised to the used simulation lengths to show 

directly the linear relationship between the simulation lengths at 16, 50, 100 and 200 metres. 

It can be seen for the different lengths in Figure B.4 that the peak DGD values can be taken as 

growing linearly with fibre length, justifying the normalisation of the DGD to the fibre length, 

as shown in Section 6.3 for the spun fibre. 
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Figure B.4 Numerical calculation of DGD versus external applied twist for DSF Spun 4 for 

different fibre lengths. In (a) for 16 m, (b) for 50 m, (c) for 100 m and in (d) for 

200 m. 

 

Figure B.5 (a) and (b) shows the DGD versus external twist for an effective spin rate of ~γ rms  

= 8.9 turns/m for DSF Spun 4 and 3 respectively. The same effective spin has been used in 

Figure 6.18(a) for DSF Spun 4 and in Figure 6.20(a) for DSF 3, but using different spin 

amplitude Aγ, and spin periods Λγ,, showing roughly the same effective DGD reduction for 

both fibres because of the same effective spin used. 
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Figure B.5 Numerical calculation of DGD versus external applied twist for ~γ rms  ≈ 8.9 

turns/m In (a) for DSF Spun 4 and in (b) for DSF Spun 3. 
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B.4 Reported PMD values from networks across Europe 

Table B.1 lists reported PMD values from different network operators across Europe. It can 

be seen that in some countries, like Germany or Denmark, older cables may limit future 

upgrades to 10 Gbit/s TDM (e.g. for PMD = 2 ps km the maximum length is ~20 km, see 

Figure 6.24). 

 

 
 

Fibre type 
 

Fibre length 

(km) 

 

PMD 

( )ps km  

 

Operator & Reference 

Old cables 

installed 1984 & 1989 

 

 

New cables 

 

 

18 - 38.7 

 

 

21.2 - 125.6 

Max. 2.7 

Min. 0.2 

Mean.  0.8 

 

Max. 0.15 

Min. 0.05 

Mean.  0.1 

 

 

Deutsche Telekom AG 

[189] 

~ Fifty cables  

S-SMF 

5 - 70 Max.  0.809 

Min.  0.014 

Mean.  0.112 

Telia Swedish Telecom 

 [191] 

DSF 

S-SMF 

S-SMF 

168  

74 

74 

~ 1 

~ 0.17 

~ 0.06 

Telecom Italia    [14] 

Telecom Italia [190] 

 

Thirteen fibres 

S-SMFs 

43 - 133 Max.  1.64 

Min.  0.33 

Mean.  0.73 

 

Tele Denmark [187] 

 

S-SMF 

 

DSF 

 

19 - 39 

 

73 

Max.  1.9 

Min.  0.063 

Mean.  0.8 

1 

 

Swiss Telecom PTT 

[187] 

 

 

Table B.1 Review of PMD measurement results in installed systems. 
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B.5 More POTDR simulation and measurement results 

 

 

B.5.1 POTDR results on untwisted fibres using DFB and Fabry-Perot laser 

Figure B.6 shows the backscattered SOP evolution on the Poincaré sphere, measured with the 

single-channel POTDR using three different configurations: (a) a DFB with no fibre polariser 

in the output path of the POTDR, (b) a DFB with fibre polariser at the output path and (c) 

with a Fabry-Perot laser and a fibre polariser at the output path. The measurements have been 

made on S-SMF 2 at about zero twist position, showing a SOP evolution close to a circle for 

all three. 

 

The average DOP (Figure B.6) of the backscattered SOPs is the highest for the DFB laser 

with fibre polariser at the output path. For the DFB laser without a fibre polariser at the output 

the average DOP is just slightly lower. This is most probably due to the small change of the 

output SOP during the measurement time as shown in Figure 7.11(b). For the Fabry-Perot 

laser with fibre polariser, the average DOP is the lowest, due to the presence of one isolator 

after the fibre polariser. 

 

Figure B.6 also shows the error angle ε calculated from two repeated POTDR measurement 

results on S-SMF 2. It can now be clearly seen for the DFB laser that the fibre polariser at the 

output, path reduces the error in the measured backscattered SOP. The error in the SOP with 

polariser is now even lower than that for the four-channel POTDR, shown in Figure 7.26(b). 

For the Fabry-Perot laser, the error in the measured SOP is about the same as that for the DFB 

laser without polariser. 

 

From the discussion above, we can conclude that the error in the backscattered SOP 

measurement can be reduced by using a polariser at the output path, which insures that the 

launched pulses into the fibre under test are well polarised and are stable over measurement 

time. On the other hand, there is some additional loss due to the fibre polariser. 
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Figure B.6 Measured SOP evolution, DOP and error angle ε along S-SMF 2 at about zero 

twist using the single-channel POTDR. In (a) with a DFB laser and no fibre 

polariser at the POTDR output path, (b) with a DFB laser and fibre polariser at 

the POTDR output path and (c) with a Fabry-Perot laser and fibre polariser at the 

POTDR output path. 

 

 

B.5.2 Error in analysing optics for single-channel POTDR 

For the single-channel POTDR, the largest error angle ε in the analysing optics is due to the 

error in the λ/4 waveplate which is less than ±1.5% at λ = 1.55 μm (see Subsection 4.4). 

Figure B.7 shows the computed error angle ε as a function of the SOP for an error in the λ/4 

retardation waveplate of ±1.5% and assuming zero noise. This showed that the average error 

over all the possible SOPs is 〈ε〉 = 0.4°. The total error in the SOP and measured DOP is a 

complicated function of the true SOP and analysing optics, hence the asymmetry of the shape 

of the DOPM, Figure B.7(b), arising from the particularly chosen polariser and λ/4 plate 
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positions. However, the mean error remains approximately the same for a given error in the 

λ/4 plate1. 

 

 

B.5.2 Backscattered SOP evolution for increasing γ/δβL. 

Finding the best fit for the backscattered SOP evolution along a fibre at the presence of twist, 

measured with a POTDR, is not a simple task. This is because there are basically three 

parameters, δβL, γ, and the input SOP, which determine the three dimensional shape of the 

SOP evolution on the Poincaré sphere. However, the periodicity of the backscattered SOP 

evolution is independent of the input SOP and is given in Equation 7.9 and 7.8 for the cases 

with and without twist. The shape of the SOP evolution on the Poincaré sphere does not 

change for a fixed input SOP and for γ/δβL  = constant. For the analysis of the measured 

POTDR traces in Chapter 7, we have mainly chosen backscatter traces which show a figure of 

eight shape on the Poincaré sphere, which made it simpler to find the correct input SOP.  

 

                                                           
1  For Figure B.7, the four rotational positions of the λ/4 plate have been taken as 0°, 40°, 80° and 120° 
and the polariser as fixed at 0°. 

Figure B.7 Error in measured SOP for one channel polarimeter for fully polarised light with 

Δd3 = λ/4×1.5% and no noise ( s s s3 1
2

2
21= − − ). In (a) error angle ε and in (b) 

measured DOP. 

s2 
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This, in fact, is a very convenient way for analysing the SOP traces, but requires adjustment 

of the input SOP until the figure of eight appears in the backscatter trace. In general, an 

automated procedure which could analyse the POTDR traces independent of the input SOP, 

as mentioned in Subsection 8.2.2 is desirable. 

 

Figure B.8 shows the backscattered SOP evolution for four different input SOPs and for 

increasing γ/δβL. In (a) the figure of eight shaped SOP evolution is apparent when the input 

SOP excites both PEMs equally (with a linear input SOP). This trace is preferred for POTDR 

analysis, because it shows a great circle at zero twist and the recognisable figure of eight, and 

whose enclosed area continuously decreases with increasing γ/δβL. In (b), although both 

PEMs are excited equally, the trace is asymmetrical due to the elliptical input SOP. In (c) and 

(d), exciting one PEM only and exciting the PEMs unequally respectively, leads to further 

variations in the backscattered SOP evolution. 
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Figure B.8 The dependence of the backscattered SOP evolution on the ratio γ/δβL and the 

input SOP. 

 

Figure B.9 shows the measured backscattered SOP evolution on S-SMF 3 with the single-

channel POTDR, for two different input SOPs as a function of increasing γ/δβL. For both 

input SOPs, the backscattered SOP evolution shows a figure of eight shape whose enclosed 

area decreases with increasing γ/δβL as expected from Figure B.8(a). In finding the linear and 

twist induced circular birefringence, we could now use Equation 7.12 to find the best fit, as 



APPENDIX B   Additional results and the derivation of relevant equations B XIII 

used throughout Chapter 7. However, a more elegant method would be as indicated in Figure 

B.9 to estimate from the opening of the figure of eight or the size of the SOP trace, the angle 

α, which in Equation 7.10 determines the shape of the SOP evolution. If α and the periodicity 

of the SOP evolution L are known, the linear and twist induced circular birefringence can be 

directly obtained from Equations 7.9 and 7.10. 
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Figure B.9 The progression of the backscattered SOP evolution for increasing γ/δβL., for two 

different input SOPs as indicated in (a) and (b). 

 


