
Light in general can be described both as a particle flow of photons as used in quantum

mechanics and as a classical wave phenomenon. If described as an electromagnetic wave, it

may be characterised by its brightness, colour and state and degree of polarisation. The

human eye is a very sensitive and complex light sensor which enables us to see different

brightness and colours in the visible wavelength range but is, in general, polarisation blind.

The phenomenon of polarised light was observed in 1669 by Bartholinus and independently

in 1690 by Huygens who both observed the double refraction of light by calcite, known

nowadays as birefringence. Malus in 1808 used, for the first time, the term 'polarisation' in

describing the production of polarised light by reflection which he derived from the term

‘polarity’ as used to describe the two sides of magnetic poles. Polarisation in the sense as

used by Malus, who tried to support the corpuscular theory, is a misnomer because he

explained the polarisation of light as the polarity of the corpuscles. The proper description of

polarised light had to wait until Fresnel and Young (circa 1816) who showed that light waves

are of transverse nature and orthogonally polarised light cannot interfere. James Maxwell

(1831-1879) unified the existing theories of electricity and magnetism leading to the

predicted existence of electromagnetic waves which travel with the known speed of light, and

concluded that light itself consisted of such waves.

The structure of this chapter is as follows. Section 2.1 introduces the electric field description

of a plane wave which is the simplest solution of Maxwell’s equations. The state of

polarisation (SOP) of the electric field will be visualised with the help of the polarisation

ellipse. Section 2.2 discusses the necessary mathematical tools, such as Jones and Mueller

calculus, for dealing with polarisation and its effects in birefringent mediums. In Section 2.3,

the Poincaré sphere will be introduced which is the most frequently used tool for

visualisation of the SOP and birefringence effects. In Section 2.4, the SOP for light travelling

in forward - backward direction will be defined for Jones and Stokes vector in a reciprocal

media. The definition will be consistent with the electric field definition for forward and

backward directions and obeys the reciprocity theorem of reciprocal systems. Section 2.5

describes Fresnel reflection and Rayleigh scattering in optical fibres. The expected scattered

CHAPTER

2
Introduction to polarisation and

scattering in optics



CHAPTER 2  �  Introduction to polarisation and scattering in optics 11

intensity from silica is calculated. The aspect of the degree of polarisation of the received

scattered SOP will be discussed.

2.1 Field representation of polarised light

Following Maxwell’s equation for light propagation in a homogenous isotropic dielectric

media, the simplest solution is a planar wave propagating in the positive z direction which

can be written, in general, as two linear independent transverse fluctuations in the x and y

direction [26]
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where Ax and Ay are the amplitudes, φx and φy the initial phases, ω = 2πf the circular

frequency at the optical frequency f of the monochromatic wave and k is the wave number in

(rad/m) which can be expressed in different ways as k = ω•(εµ0)
1/2 = k0•n = 2πn/λ0 with µ0 the

permeability, ε the permittivity, k0 the free space wavenumber and n the refractive indices at

the free space wavelength λ0. For reverse propagation direction, z = − z in Equation (2.1).

Assuming the electric field given in Equation (2.1) could be measured with an x-y

oscilloscope [27] at z = 0, in general, a two dimensional ellipse as shown in Figure 2.1(a)

would be observed. The polarisation ellipse is used to visualise the SOP in a two dimensional

plane. The shape and orientation of the polarisation ellipse is defined by its azimuth θ and

ellipticity ψ which can be calculated from the electric field in Equation (2.1) [28]
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where φ = φx − φy . The SOP in Figure 2.1(a) is left elliptical polarisation (LEP) characterised

by a positive ellipticity. If we look towards the source in our right hand set co-ordinate

system, the electric field rotates with time in a counter clockwise direction which we define
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in this thesis as LEP light. For ψ = 0, the ellipse collapses to a line and the SOP is linear (if

Ax = 0 or Ay = 0 or φx = φy). The SOP is left and right circular polarised if Ax = Ay and φ =

±π/2. The same electric field vector as used for the polarisation ellipse in Figure 2.1(a) traces

along the z axis a left-handed screw viewed at an instant in time, Figure 2.1(b).

y

x
z

(a) (b)y

xθ

Ψ

�
&

z

Figure 2.1 Representation of left elliptical polarised light (a) Polarisation ellipse looking

towards the source (b) path of the electric field vector at a single instance of

time.

2.2 Mathematical description of polarisation

Jones and Mueller calculus: The two calculus most often employed in classical optics are the

Jones calculus and Stokes - Mueller calculus. In 1940-41, Jones [29] developed a matrix

method of 2×2 complex matrices for mathematically treating polarisation effects in optical

elements. He described linear optical systems which includes different types of birefringence

and polarisation dependent loss, the reversibility of optical systems, etc. Jones calculus is in

general used for fully polarised light. Mueller in 1943 [30], [31] described the same optical

systems as Jones by using the Stokes calculus with a real 4×4 matrix description which can

describe totally or partially polarised light. Jones - Stokes vectors and the corresponding

matrices are generally independent of the direction of propagation in three dimensions.

Nowadays, the two main approaches employed in optics for describing the interaction of

polarised light with optical devices are the Jones and Mueller calculus. Both are well

explained in books like [28], [32].

2.2.1 Jones calculus
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The Jones calculus assumes a harmonic transverse electromagnetic wave as the plane wave

given in Equation (2.1). Since the SOP of the electric field in Equation (2.1) is completely

determined by its initial phase and amplitude, the Jones vector defined in the positive

direction is
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The Jones vector contains complete information about the amplitudes and the phase of the

electric field components. If only the state of polarisation of the wave is of interest, the Jones

vector can be simplified by normalising  the Jones vector to unity amplitude

� *
& & &&
J J JJN = (2.4)

thereby losing the absolute phase and amplitude information of the two orthogonal fields but

gaining a simpler expression for the vector. In books like [28], large tables of Jones vectors

for different SOPs can be found. Two complex vectors are orthogonal if the scalar product

with one of the vectors a transpose conjugate is zero. The same is true for two SOPs which

are referred to as being orthogonal when their Jones states are orthogonal

& &
J Ja

T
b

* = 0 (2.5)

The Jones matrix for a linear optical element assuming no differential loss between the two

eigenmodes can be written as a 2×2 matrix M J whose elements are in general frequency

dependent [33], [34]
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 where α is the absolute power attenuation coefficient, βΑ(ω) is

the propagation constant containing the absolute phase information (chromatic dispersion)

and U is the Jones polarisation matrix of the optical element. In the absence of polarisation

dependent loss, U is a unitary matrix UTU* = I where I  is the identity matrix. The unitary

matrix is of the following type
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The Jones matrix in backward direction, for a reciprocal system, is the transpose of the

matrix in the forward direction [33]

M MJ B J F
T

, ,= (2.8)

where the second subscript means forward and backward direction.

2.2.2 Stokes calculus

The Stokes form is of practical importance because the four Stokes parameters represent

intensities which are real ‘observable’ quantities in optics and can be directly measured with

the use of a polarimeter and displayed on the Poincaré sphere. In reality, there is no

monochromatic wave as assumed in Equation (2.1) and a more realistic assumption is a quasi

monochromatic wave which can be introduced as a fluctuation of the amplitude A(t) and

initial phase φ(t), but with the fluctuation small on a time scale compared to the frequency of

the light. The Stokes intensities are related to the electric field of the quasi monochromatic

plane wave as the time averaged intensities of the electric field, and can be measured through

different polarisers

( )
( )

&
S =



















=

+

−























=

+

−























=
−
−
−



















S

S

S

S

e e e e

e e e e

e e

e e

A A

A A

A A

A A

I

H V

P Q

L R

x x y y

x x y y

x y

x Y

x y

x y

x y

x y

0

1

2

3

2 2

2 2

2

2

2

2

* *

* *

*

*

Re

Im

cos

sin

φ

φ

(2.9)

where the brackets 〈 〉 denotes time averaging over at least one optical frequency period, I is

the total intensity, H, V, P and Q are the light intensity measured through linear polarisers

orientated at 0°, 90°, +45° and -45° respectively and L, R are the intensities through a left-

handed and right-handed circular polariser respectively.

The averaging in Equation (2.9) is necessary because, in general, light is not completely

polarised and may be characterised by an electric field vector which at any instance in time

has a well-defined state of polarisation that fluctuates randomly on a time scale which is slow
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compared to the frequency of light. For completely polarised coherent waves, monochromatic

light is assumed, as for the Jones vector, the amplitude and phase are time independent and

the averaging in Equation (2.9) can be dropped. The degree of polarisation is a measure of

how well behaved the SOP is, and is defined as the intensity ratio of the polarised part to the

total intensity
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In a real system, the averaged Stokes vector will often depend on the integration time T of the

measurement system which integrates the individual Stokes parameters with time

( )S
T

S t dt nn n

T

= =∫1
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0

, , , (2.11)

The shortest integration time will normally be given by the receiver response time. The DOP

may be determined by adjusting an arbitrary polariser1 for minimum Pmin and maximum Pmax

power transmission

DOP
P P

P P
=

−
+

max min

max min

(2.12)

which will be a useful equation in Chapter 7 when measuring the DOP of a short optical

pulse. In reality, a light wave contains a whole frequency spectrum, with width depending on

the source which may be broadened by modulation. If the spectral width broadens, the

electric field amplitudes and phases in Equation (2.1) will vary more erratically with time.

Hence the DOP will decrease and the SOP will be more difficult to define precisely if both

modes are excited. For unpolarised light, DOP = 0, the electric field amplitudes and phases in

Equation (2.1) averaged over time will be A Ax y
2 2=  and ( ) ( )cos sinφ φ= = 0 so that

the Stokes vector for depolarised light is

[ ]&
SU x

T

A= 2 0 0 02 (2.13)

                                                     
1 An arbitrary polariser may be formed, for example, by a λ/4 plate - linear polariser combination.
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For describing partly polarised light the Jones vector is not very useful although it is possible

by introducing the coherency matrix [26] which is an extension of the Jones calculus. The

Stokes vector, on the other hand, naturally describes partly polarised light as a combination

of two beams, one being completely polarised 
&
SP  and the other completely unpolarised 
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The Stokes components S1, S2 and S3 of the polarised part in Equation (2.14) adequately

characterise the state of polarisation and are often normalised with respect to the total

intensity

[ ]&
s = S S S SP P P

T

P1 2 3 0, , , ,/ (2.15)

where 
&
s = 1. Two co-propagating Stokes vectors are mutually orthogonal if

& &
s sa b= − (2.16)

2.2.3 Mueller calculus

The Mueller matrix describes linear optical elements in a similar way to the Jones matrix but

using a 4×4 matrix with only real components. Mueller matrices for retarders, polarisers and

optical components can be found in [28] or [32] with derivation. An important feature of the

Mueller matrix MM for optical elements, with no polarisation dependent loss, is that it is an

orthogonal matrix. A real orthogonal matrix has many mathematically helpful properties, e.g.

its determinant is equal to plus one (det(MM) = 1) and its inverse is equal to its transpose

( M MM
T

M= −1 ). In Chapter 5, these properties and some more of the orthogonal matrices will

be essential in the derivation of the fibre polarisation simulation. The Mueller matrix in the

backward direction for a reciprocal system is similar to Equation (2.8) for the Jones matrix,

the transpose of the matrix in the forward direction
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M M MM B M F
T

M F, , ,= = −1 (2.17)

It should be emphasised that Equation (2.17) is only true for birefringent mediums with no

polarisation dependent loss and also ignores attenuation.

2.2.4 A comparison between Jones and Mueller calculus

Both methods have their advantages and disadvantages and complement each other to some

extent. Jones treatment of polarisation is closely related to the electromagnetic wave theory

and describes only fully polarised light, whereas Stokes and Mueller calculus can also treat

partially polarised light and describe depolarisation. The Stokes vector is related to

observable real quantities (intensities) which can be directly measured by using a

polarimeter.

Jones calculus employs a smaller matrix and is applicable to systems where the absolute

phase has to be preserved. For coherent light, the Jones calculus is more suitable in

determining the SOP, as is the case in coherent scattering problems where two mutually

coherent light beams have to be added by using the Jones vectors of the two beams. Only if

the coherent beams have orthogonal states of polarisation may the Stokes vector be used to

combine the vectors. On the other hand, for the more practical case of the combination of

incoherent light beams, the individual Stokes vectors can be just added, whereas the Jones

calculus requires an extension to the density matrix which is of greater complexity. Further,

for depolarising optical systems, the Mueller calculus is superior to the Jones calculus [35]

because every Jones matrix can be expressed as a Mueller matrix but not always vice versa as

in the case of a depolariser.
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2.3 The Poincaré sphere

The Poincaré sphere was introduced in 1892 by Poincaré as a geometrical representation of

the Stokes vectors (developed by Stokes in 1852). The Poincaré sphere will be our most

important tool to visualise the SOP throughout the thesis, and also to describe polarisation

effects in optical elements.

2.3.1 The Stokes vector representation on the Poincaré sphere

The normalised Stokes components in Equation (2.15) are the co-ordinates on a unit sphere

as indicated in Figure 2.2(c) with s1, s2 and s3. Any SOP of the normalised Stokes vector 
&
s

given in Equation (2.15) can be directly represented as a unique point on the surface of the

Poincaré sphere. Depolarisation can be represented on the sphere by using its radial

dimension. A general elliptical SOP characterised by its azimuth θ and ellipticity ψ as shown

in Figure 2.2(a) or Figure 2.1(a) is represented on the Poincaré sphere by a point SOPA with

longitude and latitude 2θ and 2ψ respectively as shown in Figure 2.2(c). Hence, all linear

polarised states for which the ellipticity vanishes (if Ax =0 or Ay = 0 or φx = φy) are

represented by points on the equator of the sphere.

The absolute direction of the linear states has to be defined with respect to a fixed laboratory

frame. The poles of the sphere represent left and right circular polarisation (if Ax = Ay and φ =

±π/2 ) where left circular polarisation has positive handedness and is always on top of the
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Figure 2.2  Polarisation ellipse and Poincaré sphere representation of SOP
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Poincaré sphere. All the other possible SOPs on the sphere are elliptical. The relation

between the normalised Stokes vector 
&
s and the azimuth - ellipticity can be found on the

Poincaré sphere
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Orthogonal SOPs as formulated in Equation (2.16) are quite useful because any SOP can be

represented as a linear superposition of two waves with orthogonal SOPs. On the sphere,

orthogonal SOPs are simply at diametrically opposite ends on the Poincaré sphere, as

indicated in Figure 2.2(c) with SOPA and SOPO. On the polarisation ellipse, orthogonal SOPs

have perpendicular major axes, the same ellipticity and opposite handedness. The Poincaré

sphere is an important tool to visualise the SOP response of optical elements as in the case of

a simple retarder which is a simple rotation of the Poincaré sphere around the eigenvector of

the retarder.

2.3.2 The use of the Poincaré sphere to describe birefringent systems

There are two equivalent ways of describing polarisation effects in uniform birefringent

mediums. One is by using the coupled mode theory [36]-[38] with the electric field vectors

(Jones vector) and the other is by using the Mueller matrix description with Stokes vectors

which can be directly related to a geometrical description on the Poincaré sphere [37]-[40].

The Mueller matrix for a birefringent element with no polarisation loss is, in general, an

orthogonal matrix and can be represented on the Poincaré sphere as a rotation of the sphere

around its eigenvectors, which are also called the polarisation eigenmodes, where the

magnitude of the rotation is the birefringence of the optical element (Section 4.5). The Stokes

vector and the Mueller matrix description of birefringent optical elements have been used

throughout the thesis mainly because of their direct relation to, and simple visualisation on,

the Poincaré sphere.

For the sake of completeness, it should also be mentioned that the SOPs, as mapped on the

Poincaré sphere, can be projected onto a two dimensional complex plane to visualise and

study the polarisation behaviour of optical systems [41], in a similar manner to the Poincaré

sphere. Furthermore it is possible to use Jones matrices to describe a physical system and still

use the Poincaré sphere to visualise the results.
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2.4 Reciprocity in optical elements

The Jones vector for a wave propagating in the positive z-direction is defined in Equation

(2.3). For a counter-propagating wave, the space inverse has to be taken which is the complex

conjugate of the electric field in Equation (2.3). In bi-directional systems, the forward and

backward matrices and SOPs have to be marked differently. Normally for the Jones and

Mueller calculus, forward wave propagation direction is assumed. Next the Jones - Stokes

vector for backward direction will be defined so that the reciprocity of the system is not

invalidated.

2.4.1 Reciprocity theorem

Reciprocity may be stated in quite a general form that if a signal experiences a certain time

delay and attenuation in one direction, it will experience the same attenuation and time delay

in the reverse direction if the medium is symmetrical (reciprocal) with respect to the direction

of propagation. For electromagnetic waves, the reciprocity theorem is often referred to as the

Helmholtz reciprocity theorem. In optical fibres, in terms of polarisation, where our interest

lies, it is useful to define the reciprocity with respect to the fibre polarisation modes and the

mode coupling in the fibre. In a reciprocal system, the mode coupling from mode A at the

fibre input to mode B at the output is the same as the mode coupling from mode B to mode A

in the reverse direction, which is clearly not satisfied in the case of Faraday rotation2 in the

system.

2.4.2 Definition of Stokes vector for forward and backward direction

In Chapters 4 to 7, polarisation effects for forward and forward - reflected - backward

travelling waves are treated using the Mueller calculus for media without polarisation loss.

For the forward direction, the Mueller matrix is a simple rotation matrix where the actual

form of the rotation matrix in the case of linear and circular birefringence will be derived in

Chapter 5. On reflection, the incident SOP remains unchanged ( )� � � �e e and e ex x y y
+ − + −= =  as in

the case for Rayleigh scattering, assuming ideal identical dipole scatterers and for Fresnel

reflection from a glass to air interface (Section 2.5). However, because there is a change in

                                                     
2 Faraday effect, e.g. in a Faraday rotator such as used in optical isolators, causes a non-reciprocal

rotation of the SOP. A wave travelling in the +z direction will undergo the opposite rotation to a wave

travelling in the −z direction with respect to the direction of propagation. This is in contrast to ‘normal’

birefringent mediums where the wave cannot differentiate between +z and −z propagation.
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direction, we have to use the space reversal for the reflected SOP as will be seen below. For

the backward direction, Jones [33] has shown that in the absence of magneto-optical rotation

(Faraday effect), a birefringent medium is reciprocal and the backward Jones matrix is the

transpose of the forward matrix which also holds for the Mueller calculus. In Section 4.5, the

resultant measured Mueller matrices in forward, backward direction and forward - reflection -

backward direction for different optical components will be shown.

The confusion starts when defining the Stokes vector for counter-propagating waves because

the Stokes vector which is related to the intensity does not contain information about the

direction of propagation. For the following derivation of the Stokes vector in backward

direction, we use the convention for co-propagating waves as used in Reference [42] which is

consistent with the principle of reciprocity. The backward direction for the Jones vector in

Equation (2.3) is defined by the space reversal of the electric field in Equation (2.1)

( )� �
& '
z z= − . For the Jones vector, we can say, in general, that the co-propagating optical waves

have identical SOPs if 
& &
J J= a  and for the Stokes vector if 

& &
s s1 2= , where a is a complex

constant. The identical SOP of the Jones vector for counter-propagating waves (as on

reflection) with regard to its propagation direction is the space reversal or complex conjugate

& '
J J= a * (2.19)

Following from that, the identical Stokes vector for a counter-propagating wave in the same

sense as the Jones vector has to be the space reverse and from Equation (2.9) and (2.19) the

reversed Stokes vector is
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From Equation (2.20), it can be seen that physically the complex conjugate means the reverse

of the handedness of the polarisation ellipse (SOP). The handedness in that sense is defined

with respect to the direction of propagation. Considering now the Mueller matrix for ideal

reflection we can write [43]
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On the Poincaré sphere the change of the handedness is a simple reflection of the SOP on the

equatorial plane of the sphere as indicated in Figure 2.2 by the reflection of the SOPA to

SOPM.

Reciprocal and non reciprocal optical elements

Optical fibres, couplers, erbium and semiconductor optical amplifiers can be regarded as

reciprocal optical elements, while Faraday rotators and Brillouin amplifiers, which only

amplify signals opposing to the pump wave and any optical system which possesses

dichroism as in the extreme case of a polariser, are non-reciprocal optical elements. Optical

fibres may show some non-reciprocity if there is a fast polarisation change along the fibre,

e.g. in a very long system, the birefringence may change before the reflected wave travels

backwards. This case, which is called dynamical reciprocity and investigated in Reference

[44], is certainly only interesting in long length systems, whereas our measurements are taken

on short lengths of fibres where there is little change in the measured output SOP with time.

2.5 Fresnel reflection and Rayleigh scattering

In this section, the scattering of light in optical fibres will be introduced and the main focus

will be on the intensity of the backscattered light in glass. Scattering itself is quite

complicated, especially if many anisotropic scatterers with some unknown statistic have to be

considered for the net scattering intensity.

2.5.1 Elastic scattering dipole description

In optical fibres, four types of scattering losses can be observed which are Mie scattering

(Fresnel reflection), Rayleigh scattering, Brillouin scattering and Raman scattering. In single

mode fibres, as treated in Chapter 3 and onwards, the only relevant scattering directions are

the forward and backward directions along the fibre axis and for that reason we are only

interested in those directions. Mie scattering and Rayleigh scattering (actually Mie scattering

includes Rayleigh scattering as a special case) are, in general, elastic scattering where the
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wavelength and the backscattered SOP are not altered on reflection [45]. In a classical way,

elastic scattering can be described by elementary oscillators (dipoles) where the electronic

charge bound to the nucleus is forced into oscillation by the alternating electric field of the

incident light and emits or ‘scatters’ light. Brillouin - and Raman scattering are inelastic

scattering and both show a frequency shift in the scattered light. In fused silica fibres,

Brillouin and Raman scattering is, in general, quite weak compared to Rayleigh scattering

unless stimulated by high input powers. Stimulated Brillouin and Raman scattering are

fundamental non-linear effects and can cause limitations in multi wavelength transmission

systems through multichannel cross talk and non-linear power loss [46].

2.5.2 Mie scattering and Fresnel reflection

Mie scattering, named after Gustav Mie (1908), occurs when light interacts with particles

whose size is >>λ. The scattering acts coherently with the incident light. Mie scattering is

strongly affected by the size, shape, refractive index and absorption of the scatterer medium.

The scattering centres within the particle are closely arranged within one wavelength (e.g. in

a crystal) and act coherently so as to cancel all scattered light except in the forward and

backward direction. The net scattered intensity for this coherent scattering is normally much

larger than Rayleigh scattering and has to be avoided if the Rayleigh scattered intensity is to

be measured. From Mie scattering, the usual laws of reflection and refraction, such as Fresnel

reflection, can be obtained. A typical Fresnel reflection occurs at a fibre to air interface or on

a reflection from an optical mirror. The fraction of power that is reflected PR for light at

normal incidence PI on the interface between two isotropic dielectric media with different

refractive indices n1 and n2 is given by the power reflection factor [26]
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The maximum backscattered power for an air to glass transition or vice-versa with n1 =1.5

and n2 = 1 for silica and air respectively is 4% of the incident power (≈ −14 dB).

2.5.3 Rayleigh scattering

The blue sky at day time is a nice example of Rayleigh scattering, named after Lord Rayleigh.

His theory of scattering, in 1871, showed that the intensity of the scattered light is inversely

proportional to the fourth power of the wavelength (I ∝ λ-4), which explains the blue of the

sky due to the higher scatter effect of the air molecules in the outer atmosphere at shorter
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wavelengths. Rayleigh scattering is independent on the shape of the scatterer and is treated

within Mie scattering as a special case. In general, the scatterer size is small compared to the

incident wavelength and the scatterers are assumed as ‘very’ weak allowing the Born

approximation which states that the incident field is not altered by the presence of the

scatterer.

Inhomogenous materials like, fused silica in optical fibres, are ideal for Rayleigh scattering

because the scattering in different directions is not cancelled due to interference by adjacent

dipoles as in homogenous materials. The Rayleigh scattering in glasses arises mainly from

the microscopic variations in the material density (random molecular structure), structural

defects, inhomogenities and randomly located dopants. All these effects act together as a

local refractive index change which is impressed in the fibre during the fibre drawing

process. Rayleigh scattering from the point of attenuation determines the lowest possible loss

in the fibre.

Similar to the received intensity in coherent detection with signal and local oscillator we can

write down a general equation for the Rayleigh scattered intensity considering N independent

scatterers (oscillators) from a volume V as shown in Figure 2.3. Assuming the general case of

a quasi-monochromatic wave incident in such a volume, the scattered intensity can be

expressed by a one dimensional fibre model considering just one of the two linear polarised

orthogonal modes without losing generality as [45]
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where A and φ are the amplitudes and absolute phases of the scattered field as seen at some

receiver ends. In Equation (2.23), the scattered intensities are split into a phase insensitive

term and a phase sensitive term. The phase sensitive term which determines the fraction of

power which can interfere depends strongly on the light coherence length within the

considered volume and the relative phase difference (length difference) of the randomly

distributed scatterers in the considered volume.
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The classical case of Rayleigh scattering in fibre assumes incoherent scattering which we will

discuss in the next subsection. For incoherent scattering with negligible interference from the

coherent part in Equation (2.23), we can think of a few cases: (i) a large volume with many

independent scatterers so the coherent intensity will cancel due to successive interference, (ii )

a light source with short coherence length (broad linewidth) so that the phase φ(t) changes

erratically on a small time scale short compared to the measurement time and (iii ) many

independently measured scattered intensities (e.g. many light pulses) from the volume so that

the coherent component cancels over time. Coherent scattering is mainly a problem in

OTDRs employing highly coherent light sources and a coherent detection scheme, whereas in

conventional direct detection OTDRs the effect is small.

2.5.4 Mean value of backscattered light

For incoherent scattering, there are many independent scatterers involved and statistical

methods for the evaluation of the mean scattered intensity can be used [47], [48]. For frozen

glass, the mean square of the density fluctuation -variance is directly related to the refractive

index fluctuation and can be estimated from the thermodynamic density fluctuation in the

melt at the solidification temperature (fictive temperature). The Rayleigh scattering loss αS in

(km-1) due to density fluctuation (no dopant) as a function of the fictive temperature is given

in Reference [49] and is defined as the ratio of the overall averaged scattered power to the

average incident power
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Figure 2.3  Rayleigh backscatter IR in optical fibre from a volume V
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where ∆l is the scatter volume length, n is the refractive index, p12 = 0.27 is the photoelastic

coefficient for silica, KB = 1.38•10-23 Ws/K is the Boltzmann’s constant, TF ≈ 1600 K is the

solidifying temperature for pure silica, βT = 6.9•10-11 s2m/kg the isothermal compressibility

[48]. The Rayleigh scattering loss at λ = 1.55 µm with n = 1.5 assuming no doping can be

calculated from Equation (2.24) and is αS = 0.04 /km. The backscatter loss is often given in

dB/km αS, dB = −10log10(1 − αS) which gives αS ≈ 0.18 dB/km which is about the minimum

Rayleigh scatter loss for the fictive temperature of pure silica. In optical fibres, the fibre core

is often doped, for example, with GeO2 (see Chapter 3) so that the light is guided in the core.

The doping contributes to the scattering loss from the density fluctuation due to concentration

fluctuation. For doped glass with for example GeO2, TF is decreasing but the total Rayleigh

scattering coefficient which is a combination of density and concentration fluctuation

increases linearly with the dopant concentration [50].

In Equation (2.24) the random medium is characterised by the thermodynamic density

fluctuation. The same can be expressed by considering the statistical refractive index

variation in a considered volume with refractive index variance 〈∆n2〉 and correlation length

lcor of ∆n [51]
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where b is in practice just a constant depending on the approximation used for the random

medium and its correlation function. In Equation (2.25), as in Equation (2.24), the scatter

volume or length ∆l >> λ to ensure many independent scatterers are involved and the

correlation length of ∆n is assumed to be lcor << λ.

2.5.5 Depolarisation of scattered light

When measuring polarisation effects, as for example, the polarisation matrix of a fibre in

forward or forward-backward direction, the DOP should always be chosen as high as possible

(close to 100%) in order to measure a well defined SOP, thus reducing the error in the SOP in

the presence of noise (see Section 4.4). For this reason, it is important to understand the cause

of depolarisation in optical fibres and how to avoid it. Next a list of possible depolarisation
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causes in the backscattered intensity is given which may be stronger or weaker depending on

the used source and receiver condition

(i)  Depolarisation in the forward direction is mainly caused by the polarisation dispersion,

which is treated in Chapter 3, which starts to strongly affect the transmitted light if the

delay between the transit time of the two orthogonal modes becomes greater than the

coherence time of the source. If the light gets depolarised in the forward direction, the

backward direction could, in general, double the depolarisation effect.

(ii)  Coherent scattering leads to a fluctuation in the measured intensity. This may lead to an

error in the measured SOP calculated from the measured intensities through different

polarisers, if the fluctuation changes during the averaging process. The error in the

measured SOP will then show up in the DOP.

(iii)  A large pulse width, compared to the change of SOP along the fibre, can lead to

depolarisation in the backscattered light due to an integration over all the backscattered

SOPs within half the pulse volume (see Subsection 7.5.3).

(iv)  In all the treatments above, ideal isotropic scatterers (spherical scatterers) have been

assumed and this seems to be an acceptable approximation for optical fibres. It should be

also mentioned that in remote sensing of individual particles, which also deals with

Rayleigh scattering, the depolarisation effect of scattered light is used to determine the

particles deviation from ideal sphericity [45], [52].

(v)  Any error induced by the Stokes analyser unit for measuring the SOP (as for example,

error in optical alignment, receiver noise and optical noise) leads to an uncertainty in the

measured SOP as will be discussed in Section 4.4. This uncertainty reduces the measured

DOP and increases if the measured light is only partly polarised.

The coherent fluctuation (ii) which decreases the DOP of the measured backscattered SOP

can be reduced by measuring over many pulses (which also recovers the signal from the

noise) but if the average period is too long the fluctuation, the input SOP or birefringence

along the fibre may change and decrease the DOP again. Another more obvious way to

reduce the coherent fluctuation is by the use of a broad band source or some modulation of

the coherent light source to increase the linewidth, but if the birefringence is too high,

depolarisation as mentioned in (i) may again occur.


