
In this Chapter a theoretical model for describing the fibre birefringence and the PSPs of the

fibre in the presence of twist, is presented. The theoretical model is developed through three

stages which are:

(a)  Deriving a matrix description for a fibre with twist (assuming no intrinsic linear

birefringence) with external stress.

(b)  Analogous to the solution in (a), a matrix description for fibre with twist and intrinsic

linear birefringence is derived.

(c)  From (b), the matrix description for the PSPs will be obtained, and a compact vector

equation describing the DGD as a function of twist, is derived.

It will be shown that random mode coupling can be easily introduced into the model. At the

end of the chapter, a numerical model giving the DGD as a function of externally applied

twist in spun fibres with sinusoidal spin will be introduced. The theoretical descriptions of

birefringence and DGD will be useful in later chapters, where experimental work is

presented:

In Chapter 6 an analysis and prediction of the DGD and birefringence in different kinds of

fibres as a function of twist, is presented. This is applicable to cabled fibres where a small

amount of twist is often unavoidable during fibre fabrication, cabling and deployment.

In Chapter 7 the theory is extended to include the forward-backward propagation with

reflection (ideal scattering), in order to describe and analyse POTDR data in the presence of

twist.

The structure of this chapter is as follows. Section 5.1 first describes the combination of

birefringence effects in optical fibres by using the local birefringence vector. Then the matrix

solution for fibres with uniform linear and twist induced circular birefringence will be

derived. Section 5.2 defines the PEMs and PSPs from an arbitrary rotation matrix. From the

PSP matrix the DGD equation is obtained for the twisted fibre, subsequently the PSP for an
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ensemble of fibre pieces will be derived, which allows the introduction of mode coupling into

the twisted fibre. Section 5.3 discusses the vector solution for the DGD in the rotating

reference frame obtained from the matrix solution in Section 5.2. It will be shown that the

DGD of twisted fibre increases linearly with length, neglecting some small oscillatory terms.

The ideal elastic twist to give the minimum DGD, for different values of internal linear

birefringence, will be obtained, and the reduction in DGD for uniformly twisted spun fibre

will be shown. Section 5.4 outlines a numerical simulation for the SOP evolution of the only

recently commercially available spun fibre with sinusoidal spin. The main objective of this

section is to introduce the relevant parameters for the sinusoidally twisted spun fibre, in order

to understand and calculate by numerical integration, the DGD reduction in this kind of fibre.

The results of the simulation and measurements will be shown and discussed in Chapter 6.

5.1 Mueller matrix description of the SOP evolution in

twisted fibres

5.1.1 Combining the co-existing birefringent effects in optical fibres

In a single mode fibre we can assume negligible dichroism (no PDL), uniform polarisation

over the spatial mode field [55], and preservation of polarisation orthogonality at all points

along the fibre [42]. The magnitude of the Stokes vector is constrained to unity, and using the

Poincaré sphere representation, the polarisation properties of a single mode fibre can be

expressed by a real 3×3 rotation matrix R(l, ω). This is equivalent to the Jones matrix given

in Equation 2.7 in Chapter 2 as

( ) ( ) ( )& &
s R sl l, , ,ω ω ω= 0 (5.1)

where ( )&
s l ,ω  is the Stokes vector at length l in the fibre at the optical source frequency ω. In

practice R(l, ω) in single mode fibres is a complicated function of both position and

frequency (Chapter 3). For short lengths of fibres with uniform linear and/or circular

birefringence, the SOP evolution along a fibre, at a single frequency, can be visualised by a

geometrical interpretation of the local birefringence vectors on the Poincaré sphere [37].

A single finite rotation from one SOP on the Poincaré sphere to another, e.g. from SOPin in

Figure 5.1(a) to SOPB, can be completely specified by the direction and location of the axis of
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rotation δβ� , with the rotation angle turned through δβ δβ=
&

. For the case of uniform linear

δβ
&

L , or circular birefringence δβ
&

C , as treated in Chapter 3, the rotation or birefringence

vector is fixed in the equatorial plane on the Poincaré sphere for δβ
&

L  and along the poles for

δβ
&

C  [28]. The SOP evolution which describes just a simple circle around the linear and

circular birefringence vectors is shown in Figure 5.1(a) and (b) respectively; the direction of

the rotation vectors is defined in the fixed laboratory frame and coincides with the PEM of

the fibre.

δβ
&

C

P

LCP
(a) (b) (c)

H

δβ
&

L

SOPin

SOPin

H

LCP

SOPB

H

P

LCP

δβ
&

C

−2
&

γ
δβ
&

SOPin

P

2γ
δβ
&

L

Figure 5.1 Birefringence vectors and evolution of polarisation for (a) linear birefringence,

(b) circular birefringence and (c) intrinsic linear and circular birefringence with

γ/δβL = 0.05.

If birefringence effects co-exist e.g. (i) linear birefringence due to shape birefringence and

externally applied pressure, or, (ii) twist induced circular birefringence and external stress,

the resultant birefringence vector is simply the vectorial sum of the individual birefringence

vectors on the Poincaré sphere. However, for internal linear birefringence due to shape

birefringence (Section 3.3), and twist as indicated in Figure 5.2, the co-existing linear and

circular birefringence vectors cannot be added vectorially on the Poincaré sphere, because

there is also a geometrical rotation of the linear birefringence axes at twice the twist rate, on

the Poincaré sphere, as indicated in Figure 5.1(c). However by

considering an infinitesimal rotation (on local basis), the

rotations commute and vector addition can be used, because the

order of rotation is irrelevant. These infinitesimal rotations can

be expressed as a rotation around the resultant local

birefringence vector δβ
&

, by the following differential vector

equation [37], [126]

γ

δβL

γl

Figure 5.2  Fibre with

internal birefringence

δβL, twisted at rate γ.
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d l

dl
l l

&
& &s

s
( , )

( , ) ( , )
ω

δβ ω ω= × (5.2)

Equation (5.2) describes the SOP evolution along the fibre at a fixed source frequency. A

similar vector equation describing the polarisation dispersion by the so-called polarisation

dispersion vector, 
&
Ω , has been introduced in Section 3.4 and will be important in this

chapter [37], [126]

d l

d
l l

&
& &s

s
( , )

( , ) ( , )
ω

ω
ω ω= ×Ω (5.3)

Equation (5.3) describes the first order dependence of the SOP with respect to the optical

frequency (see Chapter 3). By combining the two vector Equations (5.2) and (5.3) the general

Equation 3.40 in Section 3.4 describing the evolution of the PSP with length and frequency,

can be found.

5.1.2 Mathematical formulation for describing fibres with linear and

twist induced circular birefringence

In this subsection an analytical solution of the SOP evolution in fibres exhibiting uniform

linear and circular birefringence will be derived by solving Equation (5.2). From this solution

the polarisation dispersion in a fibre with twist will be obtained by using Equation (5.3).

By assuming an infinitesimal fibre section with uniform linear and circular birefringence the

two rotations commute as mentioned above, and can be described by a single rotation vector.

The birefringence vector in Equation (5.2) can be now described as a vector sum of a rotating

linear birefringence vector along the equator of the sphere, with twice the twist rate γ, and a

fixed circular birefringence vector which aligned along the poles of the sphere. The local

birefringence vector can be expressed on the Poincaré sphere as (see Figure 5.1(c))

( )
( )
( )δβ

δβ
δβ

δβ

δβ γ α
δβ γ α

δβ

&
l

l

l

l

l
x

y

z

L o

L o

C

=
















=
+
+

















cos( )

sin( )

2 2

2 2 (5.4)

where α0 is the angle of the local fast fibre axis orientation at l = 0 (−π < 2α0 ≤ π). The

wavelength dependence in Equation (5.4) has been temporarily dropped because only the
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solution at a single frequency is of interest. The twist rate has been defined as positive for

right-handed twist, which induces L-rotary optical activity1, such that the plane of

polarisation rotates counter clockwise when looking towards the source. The vector Equation

(5.2) can be re-written in matrix form using the local birefringence vector in Equation (5.4) as

d l

dl
l l where l

l

l

l l

z y

z x

y x

&
&s

A s A
( )

( ) ( ) ( )

( )

( )

( ) ( )

= =
−

−
−

















0

0

0

δβ δβ
δβ δβ
δβ δβ

(5.5)

The matrix A(l) is a skew Hermitian matrix (anti symmetric matrix) and its transpose is equal

to the matrix multiplied by minus one A AT l l( ) ( )= − . Equation (5.5) consists of three

coupled differential equations ds1,2,3/dl, which cannot be solved directly, because of the

length dependence of the eigenvectors in the matrix. In the next subsection, a solution for

A(l) will be derived assuming δβx and δβy are independent of l (A = constant), as in the case

of a twisted fibre with no internal birefringence, but external applied stress. This solution will

then help by analogy, to derive the solution for fibre with twist and internal birefringence by

applying the rotating reference frame.

5.1.2.1 Solution for the constant skew symmetric matrix ( )A δβ
&

.

The solution for the linear-homogenous differential Equation (5.5) with a constant matrix

( )A δβ
&

 to give the desired rotation matrix R, which analogous to the scalar case, is an

exponential function

( )& & & &
&

s s R sA( ) ( ) ( , ) ( )l e ll= =δβ δβ0 0 (5.6)

The validity of the exponential form can be proved by expanding the matrix exponential e lA

into a Taylor series, substituting the expansion into the left hand side of Equation (5.5), and

differentiating with respect to l

                                                     
1 If there is only birefringence due to twist, right-hand twist can be described by a left circular retarder

(LCR). On the Poincaré sphere, the circular birefringence vector is then pointing with its fast axis in the

direction of the left circular polarisation pole (LCP), Figure 5.1(b), which is defined as positive and

where, after convention, a LCR retards RCP with respect to LCP.
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d l

dl
l l

l l l

&
&

&

s A A A
s

A I
A A A

s

( )

! ! !
... ( )

! ! !
... ( )

= + + + +










= + + + +












0
1

2

2

3

3
0

1 2 3
0

2 3
2

2
2

3
3

= A sAe l &( )0 (5.7)

where I  is the 3×3 unit matrix (identity matrix). Equation (5.7) proves that this solution is

correct and further shows that for a skew symmetric matrix the exponential e lA  is a rotation

matrix. Next, the rotation matrix R which is in exponential form, will be decomposed into a

proper 3×3 matrix, where it will be helpful to normalise the components of the matrix ( )A
&
β

to δβ δβ δβ δβ= + +x y z
2 2 2 , which is the angular rotation speed2 of δβ

&
, such that

( ) ( )B A Bδβ δβ δβ ε δβ� �= =
=

∑
&

or ij ijk k
k 1

3

(5.8)

where δβ δβ δβ� =
&

 is the unit vector pointing in the direction of rotation, and εijk is the

permutation symbol, which is defined as

εijk

if i j k is a cyclic permutation of

if i j k is a non cyclic permutation of

otherwise

= − −








1 1 2 3

1 1 2 3

0

, , , ,

, , , , (5.9)

The skew-symmetric matrix B in the normalised form has some useful properties which

include

( ) ( )B B B B2 1 2 2 21 1 0 1 2n n n n
and n+ += − = − = , , , ... (5.10)

                                                     
2 δβ is the imaginary value of the complex eigenvalues from the skew-symmetric matrix k(λ) =

det(Iλ−A) = λ3+δβλ = 0 with eigenvalues λ1 = 0 and λ2,3 = ±jδβ
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Equation (5.10) can be proven by using the property that δβ δβ δβ� � �
x y z
2 2 2 1+ + = . Re-writing

the exponential solution e lA  given in Equation (5.6) in terms of the normalised matrix B

multiplied by the angular rotation speed as determined in Equation (5.8), the exponential

matrix solution is now

( )R Bδβ δβ
&
l e l= (5.11)

Expanding (5.11) into a Taylor series and using the properties of the normalised skew-

symmetric matrices given in Equation (5.10) it is possible to obtain

( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( )( )

e l l l

l

n

l

n

l l

l

n n

n

n n

n

B I
B B B

I B B B

I B B

δβ δβ δβ δβ

δβ δβ

δβ δβ

⋅

+

=

∞

=

∞

= + + + +










= +
−

+
+ −

−

= + + −

∑ ∑

1 2 3

1

2 1

1

2

1

2
2

3
3

2 1

0

2 2

2

0

2

! ! !
...

! !

sin cos

( )= R δβ
&

l (5.12)

In Equation (5.12) the Taylor series of the sine and cosine have been used to obtain the

rotation matrix R, which describes the SOP rotation around an fixed elliptical birefringence

vector δβ
&

 on the Poincaré sphere as shown in Figure 5.3(a)

& & &
s R s( ) ( ) ( )l l= δβ 0 (5.13)

Since the rotation matrix in Equation (5.13) is a unity orthogonal matrix, the determinant

det(R) = 1, and its inverse equals its transpose (R-1 = RT), whilst the rotation in the opposite

direction is given by

( ) ( ) ( )R R R− = = −δβ δβ δβ
& & &
l l lT 1 (5.14)

Equation (5.13) can be also written in a vector form by using the reverse of the arguments

used in Equations (5.2) to (5.5), and using δβ δβ� �⋅ = +T I B 2 ,
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( ) ( )( ) ( )( )( )& & & &
s s s s( ) cos ( ) sin � ( ) cos � ( ) �l l l l= + × + −δβ δβ δβ δβ δβ δβ0 0 1 0 (5.15)

(a) LCP

P

(b)
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&
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&

L External,

δβ
&

C

P

δβ
&

SOPin

Figure 5.3 Birefringence vectors and evolution of polarisation for (a) external linear and

circular birefringence (intrinsic δβL = 0), and (b) intrinsic linear birefringence

and circular birefringence with γ/δβL = 0.1.

5.1.2.2 The rotating sphere

The three coupled differential equations ds1,2,3/dl given in the matrix Equation (5.5) cannot be

solved directly, as shown for the constant matrix A in Subsection 5.1.2.1, because of the

length dependence of the eigenvectors in the matrix. By rotating the Poincaré sphere at twice

the twist rate, relative to the fixed laboratory frame, a constant elliptical eigenvector can be

found in the rotating frame [37], as indicated in Figure 5.3(b).

The rotation of the Poincaré sphere around its fundamental axes x-y and z can be derived by

writing the components of the skew symmetric matrix Bδβ•l in its fundamental

transformation basis, by using the appropriate rotation generators � , � , �r r rx y z , which determine

the rotation axes as

( )B r r rδβ δβ δβ δβ δβl lx x y y z z= + +� � � � � � (5.16)

where � , � , �r r rx y z= −
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As specified in Figure 5.1 the twist birefringence vector is along the poles of the sphere

[ ]δβ� = 0 0 1
T

, and the rotation generator �rz  is used to generate the rotation around the

poles (rotating frame), with twice the twist rate, in order to transform Equation (5.5) into a

constant matrix. The rotation of the sphere with twice the twist around the z-axis can be

written in exponential form by using Equation (5.11) and Equation (5.16) as

R Rr r
z ze and ez z( ) ( )( ) ( )α αγ

α
γ

αγ γ= − = −� �

(5.17)

where αγ=2γl+2αo. The proper matrix form of Equation (5.17) is obtained by using the same

transformation as for the general rotation matrix given in Equation (5.12)

R z( )

cos( ) sin( )

sin( ) cos( )α
α α
α αγ

γ γ

γ γ=
−















0

0

0 0 1

(5.18)

and with rotation in the opposite direction as

R R Rz z z
T( ) ( ) ( )− = =−α α αγ γ γ

1 (5.19)

Re-writing Equation (5.5) now with either Equations (5.17) or (5.19) in order to get a

constant matrix A c  (independent of l), gives

d l

dl
lz c z

&

&s
R A R s

( )
( ) ( ) ( )= ⋅−α αγ γ

1 (5.20)

where R A Rz c z( ) ( )α αγ γ
−1  is equal to A( )l  and A c  is given by

A c

C

C L

L

=
−

−
















0 0

0

0 0

δβ
δβ δβ

δβ
(5.21)

The next step is to introduce the rotating frame, where the SOP evolution 
&
s( )l in the rotating

frame can be expressed as
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& &
s R sr zl l( ) ( ) ( )= −1 αγ (5.22)

where the subscript r denotes rotating frame. Inserting Equation (5.22) into Equation (5.20)

yields

d l

dl

d

dl
l lr

z

z

r c r

&
& &s

R
R

s A s
( )

( )
( )

( ) ( )+ =−1 α
α

γ
γ

(5.23)

where

R
R

R
R

rz

z

z

z

z

d

dl

d

dl

d

d
− −= =1 1 2( )

( )
( )

( )
�α

α
α

α α
α

γγ
γ

γ
γ γ

γ
(5.24)

inserting Equation (5.24) into Equation (5.23) and re-arranging the equation, the proposed

constant rotation matrix inside the rotating frame is obtained as

( )
( )d l

dl
l

g

g lr
r r L

L

r

&
& &s

A s s
( )

( ) ( )= =
−

− − −

















0 2 0

2 0

0 0

γ
γ β

β
(5.25)

or written in vector form

( )
d l

dl
g

l lr
L

r r r

&
& & &s
s s

( )
( ) ( )=

− −

















× = ×
δβ

γ
δβ0

2

(5.26)

Normalising the elements of the skew-symmetric matrix Ar in Equation (5.25) in the same

way, as carried out for the skew-symmetric matrix in Equation (5.8) by defining

( ) ( )A Br r r r rδβ δβ δβ
&

= � , the differential Equation (5.25) can be re-written as

d l

dl
lr

r r r

&
&s

B s
( )

( )= δβ (5.27)

where Br describes the normalised rotation with rotation axis determined by the unit vector

δβ�r , and δβr  is the angular rotation speed given by
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( )δβ δβ γ γr L g= + −2 2
2 (5.28)

The rotation vector δβ
&

r  in the rotating reference frame, agrees with the one derived by

Ulrich and co-workers [37] by geometrical means using the Poincaré sphere. The vector δβ
&

r

(without subscript) is also indicated in Figure 5.1(c) and Figure 5.3(b).

5.1.2.3 Solution for the twisted fibre with internal linear birefringence

Because the matrix Ar = Brδβr is constant, the differential equation given in Equation (5.25)

or (5.27), can be solved in an analogous way to the exponential solution used in Subsection

5.1.2.1. By expansion into a Taylor series, the proper rotation matrix in the rotating frame is

obtained as

& &
s Rsr rl( ) ( )= 0 (5.29)

where

( )R I B B( ) sin( ) cos( )δβ δβ δβ
&

r r r r rl l l= + + −1 2 (5.30)

Finally transforming Equation (5.29) back into the laboratory frame using Equation (5.22)

yields

& & & &
s R R R s R s( ) ( ) ( ) ( ) ( ) ( )l lz r z

T
o= =α δβ αγ γ2 0 0 (5.31)

Re-introducing the temporarily dropped frequency dependence of the rotation matrix, the

final equation for the fibre with twist can be written as

& &
s R s( , ) ( , ) ( , )l lω ω ωγ= 0 (5.32)

where R γ ω( , )l is the final unitary rotation matrix for simulating a fibre with uniform linear

δβL, and circular birefringence δβC, whose individual frequency co-efficients have been

derived in Section 3.3. It should be also realised that the solution given in Equation (5.31)
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also covers the simpler case of fibre with twist and external stress, but no internal

birefringence, as given in Equation (5.12).

5.1.2.4 Solution for an ensemble of fibre pieces with linear and

circular birefringence

The matrix solution for the twisted

fibre given in Equation (5.32) is for a

single fibre piece. The SOP evolution

along a uniformly twisted fibre can be

modelled by dividing the fibre in an

ensemble of short fibre pieces, as

shown in Figure 5.4, and using matrix

multiplication, so that the SOP at the

output of the Nth element 
&
s( )l N  is

given by

& &
s R r R s( ) ( ) ( ) ( )l N z N N z

T
o= α α2 0

(5.33)

where α α γN o n n
n

n N

l= +
=

=

∑2 2
1

 and r R R R R R rN N N N N= =− −1 2 1 1... . By using Equation

(5.33) the SOP evolution for elastically twisted fibre has been plotted in Figure 5.1(c).

For the twisted fibre from this subsection onwards, the subscript r denoting explicitly the

birefringence in the rotating frame will be dropped, (δβ δβ
& &

r ⇒ ) which is written mainly for

convenience, and because for uniform twisted fibre our main interest will be in the resulting

birefringence in the rotating reference frame for many of the following equations. Care has to

be taken not to confuse the birefringence in the rotating reference frame, with the local

birefringence vector in the twisted fibre.

R 1

R 2

R N-1

R N

r 1

r 2

r N-1

r N

R 1

α1=α0 + γ1l1

Figure 5.4 Fibre model for an ensemble of

twisted fibre pieces, a random

axes deviation at the interfaces of

the fibres is also indicated.
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5.2 The derivation of the polarisation eigen modes and

principal states of polarisation from the fibre rotation

matrix

In Chapter 3 the terms PEMs and PSPs were used in the sense of describing the rotation of

the SOP around a rotation axis for a birefringent element with respect to length using the

PEMs and with respect to frequency using the PSP. In this subsection the PEMs and PSPs for

an arbitrary rotation matrix will be obtained.

5.2.1 The PEMs of the fibre

The PEMs of a fibre are a typical eigenvalue problem, with input SOP equal to output SOP

along the fibre. They are only properly defined for a constant fibre ‘matrix’ with fixed

rotation axis as treated in Subsection 5.1.2.1. Since any rotation matrix R can be written in an

exponential form R = eA = eBδβ, as proved in Section 5.1, the eigenvalues of R are determined

by the eigenvalues of the skew-symmetric matrix A. These are obtained from det(Iλ−A) = λ3

+ δβλ = 0, with eigenvalue solutions λ1 = 0 and λ2,3 = ±jδβ. It then follows that the

eigenvalues of the rotation matrix R are λ1 = e0 = 1 and λ2,3 = e±jδβ = cos(δβ) ± j sin(δβ),

where δβ determines the rotation angle, and the eigenvalue solution λ1 = 1, can be used to

calculate the real eigenvector (rotation axis) of the rotation matrix.

5.2.2 The PSP of the fibre

Polarisation dispersion arises as a result of the frequency dependence of the rotation matrix

R(l,ω). In the principal state model, polarisation mode dispersion is described by a rotation of

the output SOP on the Poincaré sphere versus optical frequency, as shown in Figure 3.19,

Section 3.4. The rotation axes define the two principal states of polarisation (PSPs), which

are fixed to a first order approximation over a small wavelength range [126], [127]. The

frequency dependence of the output SOP for a fixed input SOP is given by differentiating

Equation (5.1)

ds

d

d

d
s

d

d
s sout

in
T

out out

&
& & &

ω ω ω
= =

R
=

R
R Ω (5.34)

The polarisation dispersion matrix is defined by Ω  and the input SOP has been taken as

fixed with frequency. Every exponential matrix with a skew-symmetric matrix as its
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exponent, is an orthogonal matrix [167], and Equation (5.34) can be written, in general, in

exponential form as

ds

d

de

d
e s

d

d
s s sout

out out out out

&
& & & & &

ω ω ω
= = = ×−

A
A A

= Ω Ω (5.35)

Equation (5.35) shows that the polarisation dispersion matrix Ω  is a skew-symmetric

describing a rotation of the SOP on the Poincaré sphere with frequency, and can be re-written

in vector form, to give the corresponding DGD vector 
&
Ω , as given by Equation (5.2). The

rotation axis of Ω  can be assumed to be fixed over a small wavelength range (first order

approximation), and the polarisation dispersion matrix can be written in the form as given by

Equation (5.8), as an angular rotation speed 
&
Ω  around a fixed rotation axis

Ω =
&
Ω

Ω Ω
Ω Ω
Ω Ω

0

0

0

−
−

−

















� �

� �

� �

z y

z x

y x

(5.36)

where [ ]� � � �Ω Ω Ω Ω= x y z

T

 is the component of the normalised rotation axis which

determines the PSPs and

( )&
Ω Ω Ω Ω ∆= + + = = =x y z

Ttr d d2 2 2 2ΩΩ θ ω τ (5.37)

is the magnitude of the vector which determines the group delay difference between the two

principal modes (see Figure 3.19, Section 3.4), where tr denotes the trace of the matrix.

5.2.3 The PSP matrix for the twisted fibre and for an ensemble of

fibre pieces

The PSPs of a general rotation matrix are defined in Equation (5.34) and for a twisted fibre

are obtained by differentiating the fibre matrix given in Equation (5.31), with respect to

frequency, and multiplying it by its transpose [79], [127]
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Ω( , ) ( )
( )

( ) ( )l
d

d

d l

d
lT

z
T

z
Tω

ω
α δβ

ω
δβ αγ

γ γ γ= =
R

R R
R

R R

&
&

(5.38)

To calculate the magnitude of the DGD, the PSPs which refer to a single point in a fibre can

be evaluated in the rotating reference frame, because the reference frame is independent of

wavelength3. Using Equation (5.37), and the property that the trace of an arbitrary matrix is

not changed if left multiplied with a rotation matrix, and right multiplied with the inverse of

the same rotation matrix (or vice versa)4, the equality of the DGD in both rotating and fixed

reference frame can be calculated

( )( )( )
( )

& & &

& &

Ω = ′ ′

= ′ ′

1 2

1 2

tr l l

tr l l

z
T T

z
T

T

R R R R R R

R R

( ) ( ) ( ) ( )

( ) ( )

α δβ δβ α

δβ δβ

γ γ γ γ
(5.39)

Equation (5.39) could also be used in a real measurement to calculate the DGD from the

measured rotation matrices at two different frequencies, where the derivative of the rotation

matrix is approximated by

( ) ( )d

d

R R R

ω
ω ω ω

ωω
≈

+ −
→

lim
∆

∆
∆0

(5.40)

5.2.3.1 PMD for an ensemble of twisted fibre pieces with random mode coupling

For an ensemble of fibre pieces with no random mode coupling, the PSPs along the fibre can

be calculated from the fibre matrix along the fibre as given in Equation (5.33), with RN

specifying the Nth section, and rN-1 the first N−1 sections. The derivative of the resultant

matrix, and from that, the polarisation dispersion matrix using Equation (5.38) can be

calculated as

′ = ′ + ′− −r R r R rN N N N N1 1

Ω = ′ ′R r r Rz N N N
T

z
T

N
( ) ( )α α (5.41)

                                                     
3 The geometrical rotation is wavelength independent.
4 Tr(RMR −1) = Tr(M ) where M  is an arbitrary matrix, c.f. [167].
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where α α γN o n n
n

n N

l= +
=

=

∑2 2
1

. Random mode coupling as discussed in Section 3.4 can be

introduced in Equation (5.41) by allowing a random orientation of the fibre axes between the

fibre interfaces. For a uniform distribution of the fibre axes orientation Χ between 〈−π/2 ↔

π/2 in radians〉, the resultant fibre matrix given in Equation (5.33) can be re-written as

r R R R R R rN N N N N= =− −1 2 1 1...

( ) ( )R R R RN Z N N z
T

Nl= +γ Χ Χ (5.42)

and the polarisation dispersion matrix including random mode coupling is given by

′ = ′ + ′− −r R r R rN N N N N1 1

Ω = ′ ′r rN N
T (5.43)

The random axes alignment in Equation (5.42) may be also considered as a random walk

along the fibre in which case the fibre twist along the fibre, from fibre section to fibre

section, has to be summed along the fibre.

5.3 A vector description of the DGD evolution in a fibre

with uniform twist

The first order dependence of the SOP, with respect to the optical frequency, can be

described by the DGD vector 
&
Ω , given in Equation (5.34). In Equation (5.39) it has been

shown in matrix form that the DGD magnitude of the twisted fibre can be calculated in the

rotating reference frame. On evaluating the right hand side of Equation (5.34) for R( )δβ
&

l as

given by Equation (5.30), the corresponding polarisation dispersion vector 
&
Ω  in the rotating

reference frame can be written in a compact vector form (derived in Appendix B), as [79]

( ) ( ) ( ) ( )( ) ( )&
Ω = + + − ×
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The dispersion vector in Equation (5.44) is composed of two components, one is parallel to

δβ�  and grows linearly with length, whilst the other is orthogonal to δβ�  (determined by the

derivative ( )d dδβ ω�  see Appendix B), is of constant magnitude with length, and follows a

circular motion in the plane orthogonal to δβ
&

(Figure 5.5). In general 
&
Ω is not aligned with

δβ
&

, as indicated in Figure 5.5, and the evolution

of 
&
Ω  along the fibre describes a uniform helix

in the rotating reference. The evolution of 
&
Ω  in

Figure 5.5 has been plotted using Equation

(5.44), showing the orthogonality of the vector

( )d dδβ ω�  in Equation (5.44) to δβ
&

. For fibre

lengths larger than a couple of metres, or twist

rates larger than a few turns per metre, the

oscillatory terms (as will be shown), can be

neglected, and the DGD becomes proportional to

the frequency derivative of the magnitude of the

birefringence vector

( ) ( ) ( )
( )

&
Ω = =

+ −
=

′ + − ′

+ −
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2
l l (5.45)

where ( )δβ δβ ω′ =L Ld d  and ( )δβ δβ ω′ =C Cd d . The dispersion of the linear birefringence

δβ ′L  in a fibre may arise through a combination of stress effects and geometrical effects

caused by asymmetry of the core, which are both wavelength dependent, and whose detailed

dispersion magnitudes depend on the geometrical mode factor, as discussed in Section 3.3.

For simplicity, because our main interest is in the DGD reduction with twist in Equation

(5.45), we will at the moment assume δβ ′L  to be independent of the geometrical mode factor

(m(λ) and C(λ) = 1 in Equation 3.22), so that we can write

δβ δβ
ω

′ ≈L
L (5.46)
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orthogonal
oscillating term

Figure 5.5 Birefringence and dispersion

vector in rotating reference

frame
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But we must also keep in mind that this can result in a 50% offset at zero twist from the

actual DGD value at λ = 1.55 µm, depending on the detailed structure of the fibre (see

Section 3.3). The dispersion of the twist induced circular birefringence βC, originates in the

dispersion of the stress optic coefficient C, such that [84]

δβ γ
ω

γ
ω

ω
ω

γ
ω

ω
ω

′ = = =C
dg

d

g dg

gd

g dC

Cd
 (5.47)

The wavelength dependence of C is plotted in Figure 3.5, and its wavelength dependent term

ω/g dg/dω is about 0.085 with g = 0.14 at λ = 1.55 µm for typical fibres [37], [79], [105].

Using these values for g, and the wavelength dependence of C in Equation (5.47), with some

typical linear birefringence values expected in optical fibres in Equation (5.46), the

magnitude of the polarisation dispersion can be calculated as a function of twist, using

Equation (5.44), which includes the small fluctuation terms. In Figure 5.6 the DGD versus

twist for two different fibre lengths of one and ten metres has been calculated with the above

values, and using Equation (5.44).
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Figure 5.6 Calculated values of DGD against twist using Equation (5.44). In (a) for 1 metre

fibre length where the small fluctuation terms in the DGD are visible and in (b)

for 10 metre fibre length the small fluctuation terms are not visible any more.

It can be seen in Figure 5.6(a) that for the very short one metre fibre piece the small

fluctuation terms are visible in the trace, whereas for the 10 metre fibre piece in (b) the linear

term with length dominates in the resultant DGD. In general, the small fluctuation terms are <

1 fs, and can be neglected for fibre lengths larger than a few metres, and the DGD can be

assumed to grow proportionally with the fibre length as described in Equation (5.45). Both
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traces in Figure 5.6 show an decrease in DGD towards zero, followed by an increase at higher

twist rates, when the circular birefringence is dominant.

In Figure 5.7(a) the DGD normalised with respect to fibre length has been plotted versus

twist using Equation (5.45). The ideal elastic twist rate γMin for zero DGD, where there is a

change in the sign of the DGD (the fast fibre mode at that point turns into slow one and vice

versa), can be obtained by setting Equation (5.45) equal to zero, and solving the equation for

γ which gives the solutions

( ) ( )γ δβ
π

ω
ω

δβMin
L

Lg g

Cd

dC
turns m= ±

−
≈ ±

2

1

2 1
(5.48)

Using Equation (5.48) the ideal twist rate for fibre with different initial linear birefringence

has been plotted in Figure 5.7. This value γMin could be useful in reducing the internal DGD

e.g. of erbium doped fibre amplifiers which show high DGD values (Chapter 6), by applying

the ideal twist rate for the corresponding DGD. In Chapter 6 the derived theory of the DGD

for twisted fibres will be compared with experimental results.
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Figure 5.7 For fibre lengths larger than a few metres the small fluctuation terms in Equation

(5.44) can be neglected and the DGD versus twist can be normalised to the

length. In (b) the optimum twist rate for fibre with different initial linear

birefringence is plotted, to obtain minimum DGD.

For spun fibres with uniform twisting during drawing, no shear stress is introduced, so that

δβC is equal zero, and Equation (5.45) can be re-written as
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&
Ω = ′

+













δβ δβ

δβ γ
δβL L

L
2 24

� l (5.49)

Equation (5.49) shows the reduction of the linear birefringence with the geometrical fibre

axes rotation, and can be also found in that form in References like [108] or [168]. In Figure

5.8 the DGD versus twist for spun fibre assuming zero circular birefringence is plotted using

Equation (5.44), which shows a continuous decrease in the DGD for increasing spin rates,

with the DGD at high twist rates becoming inversely proportional to the applied spin. The

small fluctuation terms in the DGD reduction can be also seen in Figure 5.8(a), for the one

metre fibre piece similar to Figure 5.6(a) for the fibre with elastic twist, but now it can be

also seen that for spin rates (twist rates) above a few turns per metre the oscillating term in

the DGD diminishes. For fibre lengths larger than a few metres as shown in Figure 5.8(b),

there is no visible fluctuation in the DGD.
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Figure 5.8 Calculated values of DGD against twist for spun fibre. In (a) for 1 metre fibre

length where the small fluctuation terms in the DGD are visible and in (b) for 10

metre fibre length the small fluctuation terms are not any more visible.

The normalised DGD for spun fibre with respect to the fibre length has been plotted in Figure

5.7(a) using Equation (5.49), together with the case of elastic twist, both for initial linear

birefringence of π/2 and π/8 rad/m. In comparing the ideal twist rates for elastic twisted

fibres in Figure 5.7(b), which theoretically gives zero DGD, with the DGD reduction for the

same twist rates and initial birefringences for spun fibre, it can be seen that the DGD of the

spun fibre is reduced to about 7.5% of its initial DGD value. It seems elastic twisted fibre

could have an advantage in that sense over spun fibre, although in practice it would be very

difficult to achieve the necessary ideal elastic twist rate in long lengths of fibres, because the

linear birefringence is usually unknown and may change along the fibre. Also spun fibre
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clearly has the advantage of reducing the DGD, independent of the initial fibre birefringence,

continuously to zero with increasing twist. Furthermore, spun fibre is also, as mentioned in

Section 3.3, quite insensitive to temperature changes [106], because no stress is generated

from the twisting.

The effective retardation of the fibre can be calculated from the eigenvalues of the fibre

rotation matrix given in Equation (5.32) for the twisted fibre. The eigenvalues as discussed in

Subsection 5.2.1 determine the absolute rotation angle (retardation) of the rotation matrix. In

Figure 5.9(a) and (b), the effective retardation of the elastically twisted fibre and spun fibre

respectively, has been calculated for a one metre fibre piece. Both show the small fluctuation

terms similar to the DGD in Figure 5.6(a) for elastic twist, and in Figure 5.8 for spun fibre.

The effective birefringence in Figure 5.9(a) shows a decrease towards zero, but does not

reach the zero birefringence because of the increase in circular birefringence which always

adds to the total birefringence, followed by an increase at higher twists where the circular

birefringence becomes dominant. For spun fibre in Figure 5.9(b) the effective birefringence

versus twist is continuously reduced with increasing twist, because there is no circular

birefringence produced.
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Figure 5.9 Calculated effective birefringence against twist in (a) for fibre with uniform

elastic twist, and in (b) for spun fibre uniformly twisted during drawing.
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5.4 Numerical calculation of the DGD reduction in spun

fibre with sinusoidal spin

In this section the formalism used to simulate the SOP evolution in spun fibre with

sinusoidally varying rotational frequency will be discussed including the calculation of the

expected DGD in such fibres, as a function of external applied twist. In Chapter 6 the

measured DGD of such spun fibres versus external applied twist will be compared to

simulation results.

It is only recently that spun fibre has become available commercially (e.g. from Lycom Fibre,

Denmark, owned by AT&T). These fibres are produced not by spinning the preform with

constant rotational frequency while the fibre is being drawn, as was originally suggested

[110], but by applying a sinusoidally varying torque to the fibre being drawn, alternatively in

the clockwise and counter-clockwise directions [13], as shown in Figure 3.17. Thus the

rotational frequency changes sinusoidally along the fibre, with Reference [13] claiming that

the fibre contains twisted portions in excess of 4 turns/m. Further in [13] the PMD of the

spun fibre is claimed to be below 05. ps km using this method.

5.4.1 Numerical simulation of the SOP evolution in spun fibre with

sinusoidal spin

For spun fibre with sinusoidal spin subject to external applied twist (as measured in Chapter

6), the local birefringence vector given in Equation (5.4) can be re-written to include the

sinusoidal spin

( )δβ
δβ α γ α
δβ α γ α

γ

γ

γ

&
l

l

l

g

L o

L o=
+ +
+ +

















cos( ~ )

sin( ~ )

2 2 2

2 2 2 (5.50)

with

( ) ( )~ sinα πκγ γ γ= A l rad2 (5.51)

where Aγ is the amplitude of the applied spin in radians and κγ the spatial frequency in

cycles/m, which can be also expressed by the spatial period Λγ = 1/κγ with units in metres.

Inserting the local birefringence vector from Equation (5.50) into the differential Equation

(5.5) yields
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′ = − +

′ = −

′ = − +

s s s

s s s

s s s

x z y y z

y z x x z

z y x x y

δβ δβ
δβ δβ
δβ δβ

(5.52)

Equation (5.52) consist of three first order coupled differential equation which can be solved

by numerical integration. In our case a fourth order Runge-Kutta method supplied with the

software package Matlab5 has been used to solve numerically, the SOP evolution along a

fibre with local eigenvectors specified in Equation (5.50), and for a fixed input SOP. In

Figure 5.10(a) and (b), the SOP evolution for a fibre with an initial linear birefringence of 1.4

rad/m, but two different sinusoidal spin rates with no external twist (γ = 0), is shown. The

input SOP has been chosen so that both polarisation eigenmodes of the fibre at l = 0 are

equally excited. The SOP evolution shown in Figure 5.10(a) and (b) can be also described on

the Poincaré sphere by visualising the oscillation of the linear birefringence vector, which

determines the local birefringence axes, around its original unperturbed position, as indicated

in the figures.
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Figure 5.10 SOP evolution along spun fibre with sinusoidal spin. In (a) for ~γ rms ≈ 1.1

turns/m and in (b) for ~γ rms ≈ 4.4 turns/m.

                                                     
5 For the numerical simulation, the fourth order Runge-Kutta method supplied in the software package

Matlab has been used. The accuracy of the numerical integration is specified in the Matlab Reference

Guide, as better than 10-6.
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At first we can realise that the SOP on the Poincaré sphere shows some kind of periodical

pattern on the sphere, determined by the chosen periodicity of Λγ = 8 metres in Figure 5.10(a)

and Λγ = 2 metre in Figure 5.10(b). To understand the speed of the SOP evolution along the

fibre, the speed of the local birefringence vector change along the fibre now needs to be

defined next.

In Figure 5.11(a) the total rotation angle α of the fibre axis δβL is plotted versus length for

uniform twist, α = 2γl, and for the fibre with sinusoidal spin with α αγ= ~ , see Equation

(5.51), with values for the sinusoidally spun fibre, the same, as used for the simulation of the

SOP in Figure 5.10(a) and (b).
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Figure 5.11 (a) the calculated total rotation angle α of the fibre axis δβL, as a function of

length for fibre with uniform and sinusoidal spin, and (b) the speed of the fibre

axis rotation versus length.

Of more interest is the spin impressed onto the fibre which is given by the derivative of α

with respect to length, ′ =α αd dl . For the uniformly twisted fibre, the rotational frequency

is constant and is given by the twist rate ′ =α γ , as shown in Figure 5.11(b). For the

sinusoidally applied twist the fibre axes rotational frequency is given by the derivative of

Equation (5.51) as

( ) ( )′ =α π πκγ

γ
γ2 2

A
l rad m

Λ
cos (5.53)

Equation (5.53) shows clearly that for the sinusoidal twist, the applied spin (rotational

frequency) changes periodically along the fibre with a spin rate amplitude determined by both

the twist period and twist amplitude. In comparing later the constant spin magnitude with the

sinusoidal spin the root mean square value of the sinusoidal spin is used
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( )~γ
π γ

γ
rms

A
rad m=

2

2 Λ
(5.54)

In Figure 5.11(b) the spin given by Equation (5.53) is plotted for the values used for the

sinusoidal fibre axis rotation in Figure 5.11(a), and the SOP evolution in Figure 5.10(a) and

(b). From the spin as plotted in Figure 5.11(b) it is now also possible to understand the fast

SOP changes on the Poincaré sphere in Figure 5.10(a) and (b), which coincides with the

points where the local birefringence vector is in its original position and the rotational speed

of the local birefringence vector is at its highest speed (at l = nΛγ /2 with n = 0, 1, 2…). At the

points where the local birefringence vector changes direction the speed is the slowest and the

fibre behaves almost like a simple linear retarder (just the initial linear birefringence without

spin) which would show just a simple circle on the Poincaré sphere, as indicated by the

overall shape of the SOP evolution in Figure 5.10(a) and (b).

5.4.2 The DGD for spun fibre with sinusoidal spin

The main motivation for the simulation of the SOP evolution in spun fibre is to understand

how effectively this kind of spun fibre reduces the DGD for a given effective spin rate, ~γ rms,

in fibres with different initial linear birefringence. Next it will be explained how the DGD

has been calculated from the simulated SOP data at different frequencies, and in Chapter 6,

the calculated DGD for sinusoidal spun fibre will be compared with measurement results. In

Chapter 6 there will also be a short discussion comparing uniformly twisted spun fibre with

sinusoidally twisted spun fibre with respect to its practical possible DGD reductions (spin

rate) in commercial fibre production.

For the DGD calculation we could have used Equation (5.40) by calculating the Mueller

matrix at two different wavelengths around the centre wavelength at 1.55 µm. This method

would need three different input SOPs times two wavelengths which would result in six

simulation loops. Such a numerical simulation can be quite time-consuming even when using

a fast computer6, and for that reason it has been decided to use the arc method as discussed in

                                                     
6 The simulation results which will be shown in Chapter 6 have taken on average a couple of hours,

depending on the fibre parameters and fibre length, using a Pentium 120 MHz computer to calculate the

DGD.
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Section 3.5 (see also Figure 3.19 in Chapter 3). This method only needs one input SOP at

three different wavelengths resulting in just three simulation loops.

In the arc method, a plane is mapped through three measured SOPs at three different

wavelengths with fixed input SOP. From the intersection of the plane with the sphere, the

PSP direction and the rotation angle of the arc can be calculated (Figure 3.19). In real

measurements as described in Section 3.5, the arc method is not ideal because noise in the

system and the possibility of the output SOP lying close to the PSP degenerates the method’s

accuracy considerably. In simulation there is no noise but the error in the numerical

calculation has to be considered which can be reduced to negligible values by choosing the

correct wavelength step size so that the output SOP on the sphere shows three well separated

SOPs, e.g. arc angle > 10° but < 180°. Moreover the input SOP in the simulation can be

chosen so that the output SOP is well separated from the PSP (see .e.g. Figure 5.10). In

Chapter 6, the DGD calculated with the numerical method for uniform elastically twisted

fibre will be compared with the DGD calculated from the analytical solution given in

Equation (5.45), showing perfect agreement between the two methods.


