# TeliaSonera

Highlighting the Specific Design and Measurement Challenges Faced when Developing WCDMA Indoor Networks

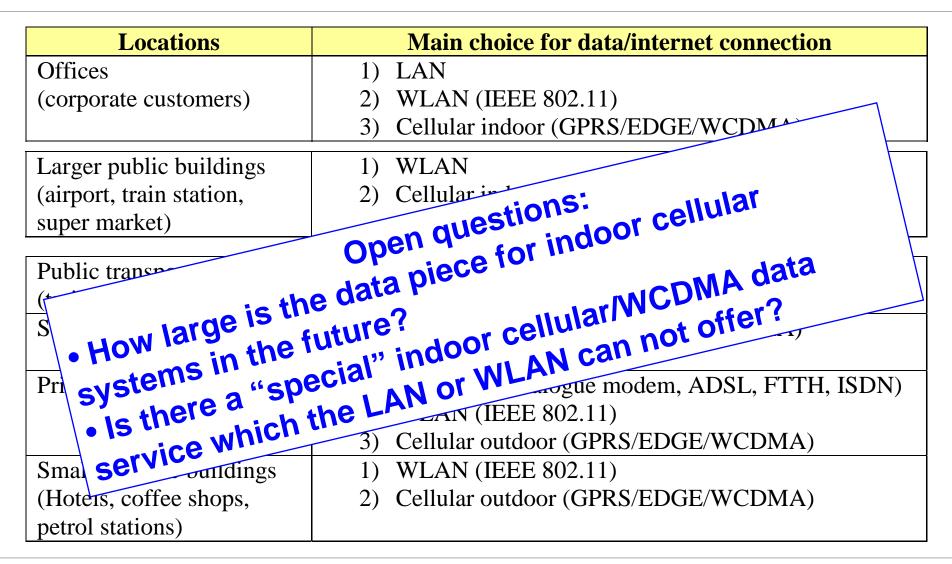
Ralf Schuh TeliaSonera Sweden Isbergs gata 2, 20521 Malmö Email: ralf.schuh@teliasonera.com

2005-10-18

IIR In-Building Solutions München, Deutschland 2005

#### Outline

- Identifying and overcoming the particular design challenges of indoor WCDMA networks considering the service requirements of subscribers in offices and public buildings
- Simulating WCDMA in-building applications / solutions
- Optimising onsite measurements


#### In-building coverage solutions with emphasis on speech

- In offices and public building dedicated indoor systems are normally mainly for increasing the capacity
  - However, in general 9 out of 10 calls are still over fixed lines.
- For speech capacity design we know:
  - Future considerations: - # of users with mobiles in the

  - Migrating the fixed users to mobile users • Fixed-mobile convergence (VolP e.g. over WLAN) sector, depending on the interference. E.g. 60 Erlang/100 mErlang/user = 600 speech users (see previous IIR talks).
    - Consider also if GSM indoor system exists less speech capacity is needed for the indoor WCMDA system

[eliaSonera

#### How "much" should we plan for data?



TeliaSonera

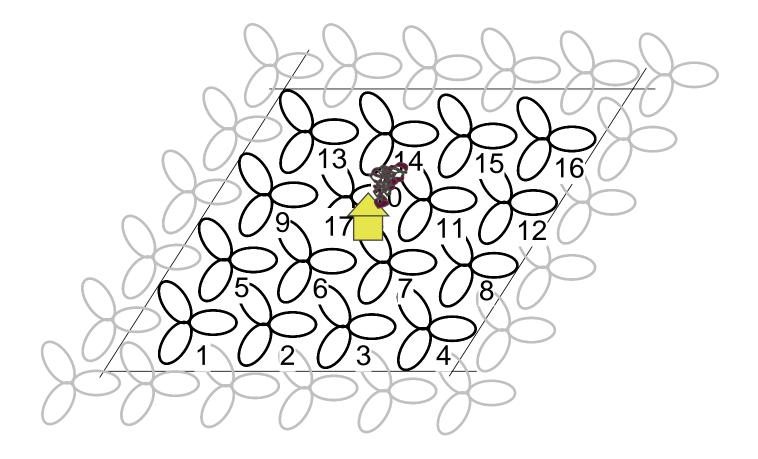
#### Speaking about time scales and interworking

- Macro/micro/pico GSM/GPRS/EDGE/WCDMA BSs
  - Passive/active distributed antenna system for larger buildings mainly designed to increase capacity (for speech service).
  - Current WCDMA radio network based on 3GPP R99. We have data rates of 384/64 kbps, mobiles with uplink data rates of 128 kbps are available e.g. the Nokia 6630.
  - 3GPP Rel-5 includes HSDPA. IPv6 is a mandatory protocol in Rel-5 which will simplify roaming between 2G/3G and WLAN. Rel-5 content functionally was frozen mid 2002 and vendors availability will be early 2006.
  - 3GPP Rel-6 includes UMA (Unlicensed Mobile Access) technical specification which supports tight interworking and HSUPA. Rel-6 content functionally was frozen Dec 2004.
- WLAN/Bluetooth access points for data and VoIP
  - Bluetooth in nearly every mobile but short range (~10 meter Class 3)
  - Private WLAN access points in many homes.
  - Only a few WLAN enabled mobiles (GSM & WLAN) on the market so far. However, promising forecasts about GSM/WCDMA/WLAN enabled mobiles.

TeliaSonera

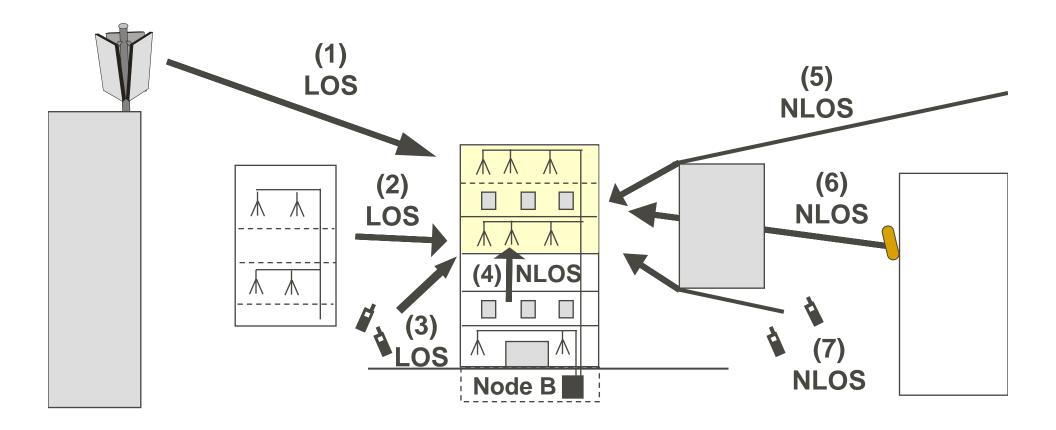
## Speaking about time scales and interworking

- Tight and loose interworking for speech and data service between cellular and WLAN networks
  - Loose interworking (IP interworking): Standardisation at 3GPP, IEEE802.11u/ IEEE802.21.
    - Works today with RADIUS roaming, mainly about authentication and billing.
    - Mobility are not solved in standard, no handover.
    - Telia HomeRun WLAN service offers "Connect Pro" which allows automatic in-logging to the "best" available connection GPRS/WCDMA, WLAN or LAN, VPN tunnel to the companies intranet and allowing seamless data sessions for the user, see www.homerun.telia.com.
  - Tight interworking (WLAN integrated in UTRAN): Standardisation at 3GPP (see Rel-6, UMA). Indoor mobile calls are routed over the fixed network using e.g. WLAN/Bluetooth.
    - Works today with proprietary solutions (for speech),
    - For UMA it needs IPsec in the mobile and in the network we need a Generic Access Network Controller (GANC) for the WLAN.
    - UMA speech over GSM/WLAN/Bluetooth trials:
      - TeliaSonera Denmark trial in Denmark
      - BTs Bluephone project in England.


In "large" offices and public buildings we have existing DASs for GSM and WCDMA and it is difficult to foresee a large penetration of WLAN enabled mobile terminals in the next two years.

## Outline

- Identifying and overcoming the particular design challenges of indoor WCDMA networks considering the service requirements of subscribers in offices and public buildings
- Simulating WCDMA in-building applications / solutions
- Optimising onsite measurements


TeliaSonera

#### Simulation: Outdoor-to-indoor and dedicated indoor coverage



TeliaSonera

#### Interference sources



TeliaSonera

## LOS/NLOS probability

We studied the LOS probability from outdoor antennas above the rooftop to buildings within a radius of 300 meter (from the digital maps of 3 European cities):

• 50 to 90% to the rooftop of these buildings (high interference)

- 8 to 31% to the middle of the buildings
- 5 to 31% to 2 meter above the ground



#### Simulation results

- Input parameters outdoor/indoor:
  - Cell radius 300/25 metre
  - Feeder loss 3/35 dB
  - Path loss model Walfish-Ikegami/COST 231 multiple wall model
  - Orthogonality factor 0.5/0.2

| Indoor                   | LOS        | NLOS       |
|--------------------------|------------|------------|
| i-factor                 | 0.5 to 0.8 | 0.1 to 0.2 |
|                          |            |            |
| SHO area                 | 20 to 23%  | 2 to 4%    |
| (indoor-to-outdoor)      |            |            |
| Indoor-to-outdoor        | 33 to 36%  | 1 to 4%    |
| connections              |            |            |
|                          |            |            |
| Capacity speech Erlang   |            |            |
| with activity factor 0.5 | 60         | 120        |
| per carrier per sector   |            |            |

## Limiting interference

- **Metalised windows** give some extra attenuation. Essential for modern buildings with large window areas.
- **Tune the outdoor network** to avoid strong radiation to the building with dedicated indoor system. Micro cells with antennas below roof top.
- Use separate indoor carriers and hierarchical cell architecture. The problem is that many operators have only 2 to 3 WCDMA carriers. However:
  - In some countries like Sweden and Germany UMTS frequency spectrum in the core band at around 2 GHz was returned and could be used.
  - Future UMTS extension band (2.5 GHz) should be around 2008 available
- Keep the **indoor feeder loss low** (20 to 30 dB), but consider also the cost factor.
- Don't increase the pilot power in order to "force" the indoor users to the indoor system as this would pollute also the outdoor network.



## Outline

- Identifying and overcoming the particular design challenges of indoor WCDMA networks considering the service requirements of subscribers in offices and public buildings
- Simulating WCDMA in-building applications / solutions
- Optimising onsite measurements



# Dedicated indoor GSM/WCDMA solution at the Ericsson building in Lindholmspiren, Gothenburg

- Office building complex with 1600 employees, 52 400 m<sup>2</sup>
  10 floors (8 above ground)
- GSM 1800 (1 x RBS 2206 plus 3 x RBS 2202), two GSM operators
- WCDMA (1 x RBS 3202 with 3 TRXs)
- 3 cells (3 x Combining Boxes)
- 124 antennas

- 400 of the employees have a 3G phone as the only phone (SonyEricsson Z1010) while the rest have GSM phones

14

TeliaSonera

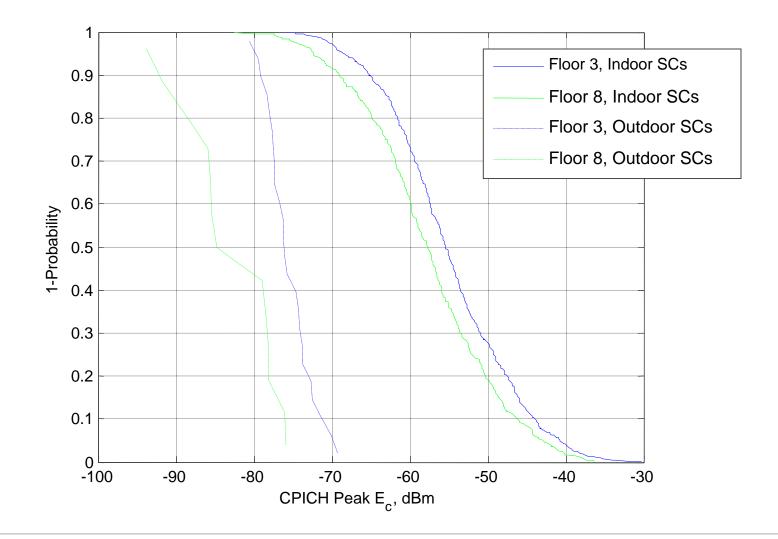
# Dedicated indoor GSM/WCDMA solution at the Ericsson building in Lindholmspiren, Gothenburg

- Indoor Macro Node B: Pmax = 43 dBm, CPICH = 32 dBm
- Passive DAS losses range from 23 to 33 dB at UMTS frequencies
- CPICH EIRP ranges from 1 dBm to 11 dBm (mainly omni-antennas)
- Cell radius per antenna ~14 to 18 meter
- Optimized RANOS settings for the indoor
- Three E1 lines
- Distance to closest outdoor Node Bs are about 500 to 800 meter



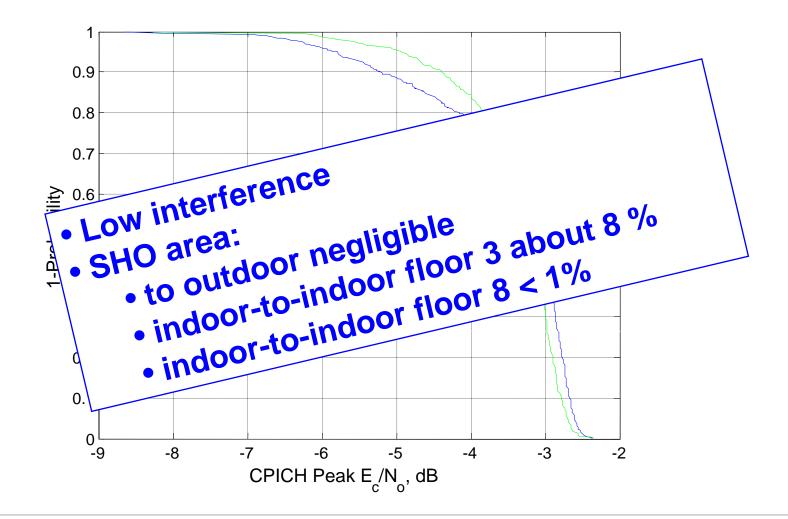


#### Test and measurement tools


- Software: TEMS and Agilent Nitro Chariot from NetIQ
- Mobiles: Qualcomm TM6200, SonyEricsson Z1010, Motorola A835, Nokia 6650
- Agilent scanner
- Various laptops



• Tektronix YBT250 BTS Transmitter and Interference Analyzer




#### Coverage measurement



17 TeliaSonera

#### Coverage measurement



18

TeliaSonera

## Load test

- With up to 11 mobiles located in different meeting rooms.
- We used FTP download
- Room A: Signal only from one sector (low interference from the other cells), ~15 metre from the antenna.
  - We achieved average user throughput of ~2400 kbps. This meant six 384 kbps connections, two 128 kbps packet switched connection and two video calls (New record!).
  - The Node B transmit power per data channel was ~ 28 dBm. We were code limited
- Room B: Strong SHO to the various indoor cells
  - We achieved average user throughput of ~1900 kbps. This meant five 384 kbps connections and two 128 kbps packet switched connection.
  - We were interference limited



# Summary

- Current indoor GSM and WCDMA systems are mainly designed and used for speech service.
- Indoor simulation and measurement results showed: (*i*) very good code orthogonality, (*ii*) small soft-handover area and (*iii*) low interference from the outdoor cells
- Load test with record downlink total average user throughputs of up to ~2400 kbps within one sector using one WCDMA carrier are achieved in TeliaSonera's live 3G network in Göteborg, Sweden, in the Ericsson building at Lindholmspiren
- Minimize interference from the outdoor network. In the future for some building separate indoor carrier using hierarchical cell architecture may be necessary in order to limit the number of SHOs.



# TeliaSonera

2005-10-18