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Characterisation of birefringence in optical fibres 
 

Polarisation mode dispersion has now become one of the main limiting factors in land based 

systems, and continues to be an issue in the design of submarine systems. This thesis describes 

a theoretical and experimental investigation of linear and twist induced circular birefringence 

and polarisation mode dispersion in single mode optical transmission fibre. The main original 

contributions described in this thesis are: 

 

♦ An analytical solution has been obtained for the differential group delay (DGD) in the 

presence of elastic twist. This solution is in excellent agreement with the extensive set of 

DGD measurements reported here, and it allows the prediction of the optimum twist rate 

needed to minimise the DGD in an optical fibre. 

  

♦ The DGD of different types of fibres: standard-step index fibres (S-SMFs), dispersion 

shifted fibres (DSFs), spun DSFs, erbium doped fibres (EDFs) and distributed EDFs 

(DEDFs) have been measured as a function of twist. Spun fibre showed the lowest initial 

DGD while the first reported measurements on DEDFs showed unacceptably large DGD 

values for high bit-rate soliton transmission. 

  

♦ From simulation and measurement, an empirical equation has been obtained for 

commercial spun fibre manufactured with sinusoidal spin, which allows the determination 

of the minimum spin (RMS value) required to obtain a fibre with low DGD. 

  

♦ A conventional OTDR has been modified to a polarimetric OTDR to analyse the 

backscattered SOP, and from this the birefringence characteristics are obtained along the 

fibre. A matrix-vector description has been developed to analyse POTDR data from fibres 

with twist. The developed theory has been verified by detailed experimental results, and it 

is shown that if twist is ignored when present, it can lead to a large error in the estimated 

values of birefringence and DGD obtained from such measurements. 
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